Effects of Serial Dependence and Large-Scale Tropospheric Circulation on Midlatitude North American Terrestrial Carbon Dioxide Exchange

2008 ◽  
Vol 21 (4) ◽  
pp. 751-770 ◽  
Author(s):  
Robbie A. Hember ◽  
Peter M. Lafleur

Abstract Linear regression was used to relate modes of tropospheric circulation variability to estimates of gross ecosystem production (GEP) and ecosystem respiration (ER) measured at 14 midlatitude North American eddy covariance (EC) towers. The North Atlantic Oscillation (NAO) exhibited a north–south gradient in its effect on fluxes, with negative influence on fluxes at central and northeastern stations and positive influence on fluxes at southeastern stations. During spring, average values of GEP and ER within the northern “cold” sector decreased by 22 and 12 g C m−2 (18% and 11%), respectively, in response to a unit increase (+1 standard deviation) in the expansion coefficient of the NAO mode. Despite a northward advancement of the “warm” sector during summer, GEP and ER remained negatively correlated with the NAO at northern stations, decreasing on average by 48 and 30 g C m−2 (8% and 6%), respectively. During spring, the North Pacific Oscillation (NPO) reduced GEP and ER at central and northeastern stations on average by 20 and 7 g C m−2 (16% and 6%) and increased GEP and ER at southern and west coast stations on average by 53 and 49 g C m−2 (12% and 17%) in response to a unit increase in the NPO. This pattern persisted into summer, only shifted northward, with flux decreases of 19 and 24 g C m−2 (3% and 5%) at northern stations and increases of 72 and 82 g C m−2 (9% and 16%) at central stations. The direction of the flux response in each case was supported by synoptic conditions inferred from composite maps of North American circulation and gridded surface air temperature anomalies. The magnitude and timing of the relationships differed between stations and was attributed to differences in geographic location and plant functional type. Difficulty in the interpretation of significant correlations was attributed to the short sample length of typical EC records and unmodeled variability, including, for example, modulation by the NAO during high NPO. Despite these limitations, long-term monitoring EC stations show promise in characterizing the regional and ecosystem-specific carbon cycle response to low-frequency modes of tropospheric circulation variability and may play a critical role in validating ecosystem model responses to such phenomena.

2019 ◽  
Vol 20 (7) ◽  
pp. 1449-1471 ◽  
Author(s):  
Long Yang ◽  
James Smith ◽  
Mary Lynn Baeck ◽  
Efrat Morin

Abstract Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.


2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


2020 ◽  
pp. 104-130
Author(s):  
Marianne Mithun

Much of linguistic typology is inherently categorical. In large-scale typological surveys, grammatical constructions, distinctions, and even variables are typically classified as present, absent, or embodying one of a set of specified options. This work is valuable for a multitude of purposes, and in many cases such categorization is sufficient. In others, we can advance our understanding further if we take a more nuanced approach, considering the extent to which a particular construction, distinction, or variable is installed in the grammar. An important tool for this approach is the examination of unscripted speech in context, complete with prosody. This point is illustrated here with Mohawk, an Iroquoian language indigenous to the North American Northeast. As will be seen, the two types of construction which might be identified as relative clauses are emergent, one less integrated into the grammar than the other. Examination of spontaneous speech indicates that the earliest stages of development are prosodic, as speakers shape their messages according to their communicative purposes at each moment.


1996 ◽  
Vol 22 ◽  
pp. 75-84 ◽  
Author(s):  
G. S. Boulton

A theory of erosion and deposition as a consequence of subglacial sediment deformation over beds of unlithified sediment is reviewed and applied to large-scale till sequences formed on the southern flanks of the North American and British and European ice sheets during the last glacial cycle. The distribution of till thickness, till lithology in relation to source materials and intra-till erosion surfaces along a flowline in the Michigan lobe of the North American ice sheet are shown to be compatible with the deformational theory but not with other modes of till genesis. It is then demonstrated, in the case of the British ice sheet, how the assumption of a deformational origin for tills can be used to infer time-dependent patterns of ice-sheet dynamic behaviour. By reference to an example from the Netherlands, it is argued that many till sequences interpreted as melt-out tills are more likely to have formed by subglacial sediment deformation.


2020 ◽  
Vol 148 (5) ◽  
pp. 1861-1875
Author(s):  
Andrew W. Robertson ◽  
Nicolas Vigaud ◽  
Jing Yuan ◽  
Michael K. Tippett

Abstract Large-scale atmospheric circulation regime structures are used to diagnose subseasonal forecasts of wintertime geopotential height fields over the North American sector, from the NCEP CFSv2 model. Four large-scale daily circulation regimes derived from reanalysis 500-hPa geopotential height data using K-means clustering are used as a low-dimensional basis for diagnosing the model’s forecasts up to 45 days ahead. On average, hindcast skill in regime space is found to be limited to 10–15 days ahead, in terms of anomaly correlation of 5-day averages of regime counts, over the 1999–2010 period. However, skill up to 30 days ahead is identified in individual winters, and intraseasonal episodes of high skill are identified using a forecast-evolution graphical tool. A striking vacillation between the West Coast and Pacific ridge patterns during December–January 2008/09 is shown to be predicted 20–25 days in advance, illustrating the possibility to identify “forecasts of opportunity” when subseasonal forecast skill is much higher than the average. The forecast-evolution tool also provides insight into the poor seasonal forecasts of California precipitation by operational centers during the 2015/16 El Niño winter. The Pacific trough regime is shown to be greatly overpredicted beyond 1–2 weeks in advance during the 2015/16 winter, with weather-scale features dominating the forecast evolution at shorter lead times. A similar though less extreme situation took place during the weaker El Niño of 2009/10, with the Pacific trough overforecast at S2S lead times.


2005 ◽  
Vol 27 (4) ◽  
pp. 639-665 ◽  
Author(s):  
Steven A. Gabriel ◽  
Jifang Zhuang ◽  
Supat Kiet

2017 ◽  
Vol 30 (20) ◽  
pp. 8335-8355 ◽  
Author(s):  
Anthony G. Barnston ◽  
Michael K. Tippett

Abstract Canonical correlation analysis (CCA)-based statistical corrections are applied to seasonal mean precipitation and temperature hindcasts of the individual models from the North American Multimodel Ensemble project to correct biases in the positions and amplitudes of the predicted large-scale anomaly patterns. Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA correction dramatically improves the RMS error skill score, demonstrating that model predictions contain correctable systematic biases in mean and amplitude. However, the corrections do not materially improve the anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the exception of October–December precipitation in Indonesia and eastern Africa. Models with lower uncorrected correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due to correctable systematic errors. Unexpectedly, corrections for the globe as a single region tend to improve the anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and more so for precipitation, perhaps due to better noise filtering. The lack of overall improvement in correlation may imply relatively mild errors in large-scale anomaly patterns. Alternatively, there may be such errors, but the period of record is too short to identify them effectively but long enough to find local biases in mean and amplitude. Therefore, statistical correction methods treating individual locations (e.g., multiple regression or principal component regression) may be recommended for today’s coupled climate model forecasts. The findings highlight that the performance of statistical postprocessing can be grossly overestimated without thorough cross validation or evaluation on independent data.


2013 ◽  
Vol 26 (22) ◽  
pp. 8787-8801 ◽  
Author(s):  
Kerrie L. Geil ◽  
Yolande L. Serra ◽  
Xubin Zeng

Abstract Precipitation, geopotential height, and wind fields from 21 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined to determine how well this generation of general circulation models represents the North American monsoon system (NAMS). Results show no improvement since CMIP3 in the magnitude (root-mean-square error and bias) of the mean annual cycle of monthly precipitation over a core monsoon domain, but improvement in the phasing of the seasonal cycle in precipitation is notable. Monsoon onset is early for most models but is clearly visible in daily climatological precipitation, whereas monsoon retreat is highly variable and unclear in daily climatological precipitation. Models that best capture large-scale circulation patterns at a low level usually have realistic representations of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an inaccurate representation of gradients in low-level geopotential height across the larger region, which causes an unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the postmonsoon season. Composites of the models with the best and worst representations of the NAMS indicate that adequate representation of the monsoon during the early to midseason can be achieved even with a large-scale circulation pattern bias, as long as the bias is spatially consistent over the larger region influencing monsoon development; in other words, as with monsoon retreat, it is the inaccuracy of the spatial gradients in geopotential height across the larger region that prevents some models from realistic representation of the early and midseason monsoon system.


Author(s):  
Andreas P. Wion ◽  
Ian S. Pearse ◽  
Kyle C. Rodman ◽  
Thomas T. Veblen ◽  
Miranda D. Redmond

We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa , and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa . Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa , these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


Sign in / Sign up

Export Citation Format

Share Document