scholarly journals Sensitivity of Surface Analyses over the Western United States to RAWS Observations

2008 ◽  
Vol 23 (1) ◽  
pp. 145-158 ◽  
Author(s):  
David T. Myrick ◽  
John D. Horel

Abstract Federal, state, and other wildland resource management agencies contribute to the collection of weather observations from over 1000 Remote Automated Weather Stations (RAWS) in the western United States. The impact of RAWS observations on surface objective analyses during the 2003/04 winter season was assessed using the Advanced Regional Prediction System (ARPS) Data Assimilation System (ADAS). A set of control analyses was created each day at 0000 and 1200 UTC using the Rapid Update Cycle (RUC) analyses as the background fields and assimilating approximately 3000 surface observations from MesoWest. Another set of analyses was generated by withholding all of the RAWS observations available at each time while 10 additional sets of analyses were created by randomly withholding comparable numbers of observations obtained from all sources. Random withholding of observations from the analyses provides a baseline estimate of the analysis quality. Relative to this baseline, removing the RAWS observations degrades temperature (wind speed) analyses by an additional 0.5°C (0.9 m s−1) when evaluated in terms of rmse over the entire season. RAWS temperature observations adjust the RUC background the most during the early morning hours and during winter season cold pool events in the western United States while wind speed observations have a greater impact during active weather periods. The average analysis area influenced by at least 1.0°C (2.5°C) by withholding each RAWS observation is on the order of 600 km2 (100 km2). The spatial influence of randomly withheld observations is much less.

2006 ◽  
Vol 21 (5) ◽  
pp. 869-892 ◽  
Author(s):  
David T. Myrick ◽  
John D. Horel

Abstract Experimental gridded forecasts of surface temperature issued by National Weather Service offices in the western United States during the 2003/04 winter season (18 November 2003–29 February 2004) are evaluated relative to surface observations and gridded analyses. The 5-km horizontal resolution gridded forecasts issued at 0000 UTC for forecast lead times at 12-h intervals from 12 to 168 h were obtained from the National Digital Forecast Database (NDFD). Forecast accuracy and skill are determined relative to observations at over 3000 locations archived by MesoWest. Forecast quality is also determined relative to Rapid Update Cycle (RUC) analyses at 20-km resolution that are interpolated to the 5-km NDFD grid as well as objective analyses obtained from the Advanced Regional Prediction System Data Assimilation System that rely upon the MesoWest observations and RUC analyses. For the West as a whole, the experimental temperature forecasts issued at 0000 UTC during the 2003/04 winter season exhibit skill at lead times of 12, 24, 36, and 48 h on the basis of several verification approaches. Subgrid-scale temperature variations and observational and analysis errors undoubtedly contribute some uncertainty regarding these results. Even though the “true” values appropriate to evaluate the forecast values on the NDFD grid are unknown, it is estimated that the root-mean-square errors of the NDFD temperature forecasts are on the order of 3°C at lead times shorter than 48 h and greater than 4°C at lead times longer than 120 h. However, such estimates are derived from only a small fraction of the NDFD grid boxes. Incremental improvements in forecast accuracy as a result of forecaster adjustments to the 0000 UTC temperature grids from 144- to 24-h lead times are estimated to be on the order of 13%.


2018 ◽  
Vol 31 (24) ◽  
pp. 9921-9940 ◽  
Author(s):  
N. Goldenson ◽  
L. R. Leung ◽  
C. M. Bitz ◽  
E. Blanchard-Wrigglesworth

In the coastal mountains of western North America, most extreme precipitation is associated with atmospheric rivers (ARs), narrow bands of moisture originating in the tropics. Here we quantify how interannual variability in atmospheric rivers influences snowpack in the western United States in observations and a model. We simulate the historical climate with the Model for Prediction Across Scales (MPAS) with physics from the Community Atmosphere Model, version 5 [CAM5 (MPAS-CAM5)], using prescribed sea surface temperatures. In the global variable-resolution domain, regional refinement (at ~30 km) is applied to our region of interest and upwind over the northeast Pacific. To better characterize internal variability, we conduct simulations with three ensemble members over 30 years of the historical period. In the Cascade Range, with some exceptions, winters with more atmospheric river days are associated with less snowpack. In California’s Sierra Nevada, winters with more ARs are associated with greater snowpack. The slope of the linear regression of observed snow water equivalent (SWE) on reanalysis-based AR count has the same sign as that arrived at using the model, but is statistically significant in observations only for California. In spring, internal variance plays an important role in determining whether atmospheric river days appear to be associated with greater or less snowpack. The cumulative (winter through spring) number of atmospheric river days, on the other hand, has a relationship with spring snowpack, which is consistent across ensemble members. Thus, the impact of atmospheric rivers on winter snowpack has a greater influence on spring snowpack than spring atmospheric rivers in the model for both regions and in California consistently in observations.


1987 ◽  
Vol 77 (3) ◽  
pp. 987-995
Author(s):  
Marvin D. Denny ◽  
Steven R. Taylor ◽  
Eileen S. Vergino

Abstract The impact of regional mb and MS formulas on regional MS/mb discrimination is investigated using a large number of Western United States earthquakes and explosions. Comparison of NEIS mb values with regional mb values shows a systematic error of 1.2. Additionally, a simple analysis of variance shows that the variance of the magnitude estimate is reduced when log(A) replaces log(A/T). These changes, along with a refinement of the distance correction, yield a new regional mb for the Western United States given by mb = log(A) + 2.4 log(Δ) − 3.95 + cj, where A = 0 to peak amplitude in nanometers, Δ is the distance in kilometers, and ci is a station correction. Usage of this formula improves the performance of regional MS/mb discrimination by a factor of 2 to 6.


2017 ◽  
Vol 146 (1) ◽  
pp. 95-118 ◽  
Author(s):  
Xiaoshi Qiao ◽  
Shizhang Wang ◽  
Jinzhong Min

Abstract The concept of stochastic parameterization provides an opportunity to represent spatiotemporal errors caused by microphysics schemes that play important roles in supercell simulations. In this study, two stochastic methods, the stochastically perturbed temperature tendency from microphysics (SPTTM) method and the stochastically perturbed intercept parameters of microphysics (SPIPM) method, are implemented within the Lin scheme, which is based on the Advanced Regional Prediction System (ARPS) model, and are tested using an idealized supercell case. The SPTTM and SPIPM methods perturb the temperature tendency and the intercept parameters (IPs), respectively. Both methods use recursive filters to generate horizontally smooth perturbations and adopt the barotropic structure for the perturbation r, which is multiplied by tendencies or parameters from this parameterization. A double-moment microphysics scheme is used for the truth run. Compared to the multiparameter method, which uses randomly perturbed prescribed parameters, stochastic methods often produce larger ensemble spreads and better forecast the intensity of updraft helicity (UH). The SPTTM method better predicts the intensity by intensifying the midlevel heating with its positive perturbation r, whereas it performs worse in the presence of negative perturbation. In contrast, the SPIPM method can increase the intensity of UH by either positive or negative perturbation, which increases the likelihood for members to predict strong UH.


2020 ◽  
Vol 110 (7) ◽  
pp. 1006-1008
Author(s):  
Lauren Lizewski ◽  
Grace Flaherty ◽  
Parke Wilde ◽  
Ross Brownson ◽  
Claire Wang ◽  
...  

Objectives. To assess stakeholder perceptions of the impact and feasibility of 21 national, state, and local nutrition policies for cancer prevention across 5 domains in the United States. Methods. We conducted an online survey from October through December 2018. Participants were invited to take the survey via direct e-mail contact or an organizational e-newsletter. Results. Federal or state Medicare/Medicaid coverage of nutrition counseling and federal or state subsidies on fruits, vegetables, and whole grains for participants in the Supplemental Nutrition Assistance Program were the policies rated as having the highest perceived impact and feasibility. Overall, the 170 respondents rated policy impact higher than policy feasibility. Polices at the federal or state level had a higher perceived impact, whereas local policies had higher perceived feasibility. Conclusions. Our findings might guide future research and advocacy that can ultimately motivate and target policy actions to reduce cancer burdens and disparities in the United States.


2008 ◽  
Vol 9 (6) ◽  
pp. 1416-1426 ◽  
Author(s):  
Naoki Mizukami ◽  
Sanja Perica

Abstract Snow density is calculated as a ratio of snow water equivalent to snow depth. Until the late 1990s, there were no continuous simultaneous measurements of snow water equivalent and snow depth covering large areas. Because of that, spatiotemporal characteristics of snowpack density could not be well described. Since then, the Natural Resources Conservation Service (NRCS) has been collecting both types of data daily throughout the winter season at snowpack telemetry (SNOTEL) sites located in the mountainous areas of the western United States. This new dataset provided an opportunity to examine the spatiotemporal characteristics of snowpack density. The analysis of approximately seven years of data showed that at a given location and throughout the winter season, year-to-year snowpack density changes are significantly smaller than corresponding snow depth and snow water equivalent changes. As a result, reliable climatological estimates of snow density could be obtained from relatively short records. Snow density magnitudes and densification rates (i.e., rates at which snow densities change in time) were found to be location dependent. During early and midwinter, the densification rate is correlated with density. Starting in early or mid-March, however, snowpack density increases by approximately 2.0 kg m−3 day−1 regardless of location. Cluster analysis was used to obtain qualitative information on spatial patterns of snowpack density and densification rates. Four clusters were identified, each with a distinct density magnitude and densification rate. The most significant physiographic factor that discriminates between clusters was proximity to a large water body. Within individual mountain ranges, snowpack density characteristics were primarily dependent on elevation.


2009 ◽  
Vol 24 (6) ◽  
pp. 1625-1643 ◽  
Author(s):  
Heather Dawn Reeves ◽  
David J. Stensrud

Abstract Valley cold pools (VCPs), which are trapped, cold layers of air at the bottoms of basins or valleys, pose a significant problem for forecasters because they can lead to several forms of difficult-to-forecast and hazardous weather such as fog, freezing rain, or poor air quality. Numerical models have historically failed to routinely provide accurate guidance on the formation and demise of VCPs, making the forecast problem more challenging. In some case studies of persistent wintertime VCPs, there is a connection between the movement of upper-level waves and the timing of VCP formation and decay. Herein, a 3-yr climatology of persistent wintertime VCPs for five valleys and basins in the western United States is performed to see how often VCP formation and decay coincides with synoptic-scale (∼200–2000 km) wave motions. Valley cold pools are found to form most frequently as an upper-level ridge approaches the western United States and in response to strong midlevel warming. The VCPs usually last as long as the ridge is over the area and usually only end when a trough, and its associated midlevel cooling, move over the western United States. In fact, VCP strength appears to be almost entirely dictated by midlevel temperature changes, which suggests large-scale forcing is dominant for this type of VCP most of the time.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.


Sign in / Sign up

Export Citation Format

Share Document