Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

2009 ◽  
Vol 48 (2) ◽  
pp. 349-368 ◽  
Author(s):  
Dev Niyogi ◽  
Kiran Alapaty ◽  
Sethu Raman ◽  
Fei Chen

Abstract Current land surface schemes used for mesoscale weather forecast models use the Jarvis-type stomatal resistance formulations for representing the vegetation transpiration processes. The Jarvis scheme, however, despite its robustness, needs significant tuning of the hypothetical minimum-stomatal resistance term to simulate surface energy balances. In this study, the authors show that the Jarvis-type stomatal resistance/transpiration model can be efficiently replaced in a coupled land–atmosphere model with a photosynthesis-based scheme and still achieve dynamically consistent results. To demonstrate this transformative potential, the authors developed and coupled a photosynthesis, gas exchange–based surface evapotranspiration model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM was dynamically coupled with a prognostic soil moisture–soil temperature model and an atmospheric boundary layer (ABL) model. This coupled system was then validated over different natural surfaces including temperate C4 vegetation (prairie grass and corn field) and C3 vegetation (soybean, fallow, and hardwood forest) under contrasting surface conditions (such as different soil moisture and leaf area index). Results indicated that the coupled model was able to realistically simulate the surface fluxes and the boundary layer characteristics over different landscapes. The surface energy fluxes, particularly for latent heat, are typically within 10%–20% of the observations without any tuning of the biophysical–vegetation characteristics, and the response to the changes in the surface characteristics is consistent with observations and theory. This result shows that photosynthesis-based transpiration/stomatal resistance models such as GEM, despite various complexities, can be applied for mesoscale weather forecasting applications. Future efforts for understanding the different scaling parameterizations and for correcting errors for low soil moisture and/or wilting vegetation conditions are necessary to improve model performance. Results from this study suggest that the GEM approach using the photosynthesis-based soil vegetation atmosphere transfer (SVAT) scheme is thus superior to the Jarvis-based approaches. Currently GEM is being implemented within the Noah land surface model for the community Weather Research and Forecasting (WRF) Advanced Research Version Modeling System (ARW) and the NCAR high-resolution land data assimilation system (HRLDAS), and validation is under way.

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
David Stevens ◽  
Pedro M. A. Miranda ◽  
René Orth ◽  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
...  

The surface-atmosphere turbulent exchanges couple the water, energy and carbon budgets in the Earth system. The biosphere plays an important role in the evaporation process, and vegetation related parameters such as the leaf area index (LAI), vertical root distribution and stomatal resistance are poorly constrained due to sparse observations at the spatio-temporal scales at which land surface models (LSMs) operate. In this study, we use the Carbon Hydrology Tiled European Center for Medium-Range Weather Forecasts (ECMWF) Scheme for Surface Exchanges over Land (CHTESSEL) model and investigate the sensitivity of the simulated turbulent fluxes to these vegetation related parameters. Observed data from 17 FLUXNET towers were used to force and evaluate model simulations with different vegetation parameter configurations. The replacement of the current LAI climatology used by CHTESSEL, by a new high-resolution climatology, representative of the station’s location, has a small impact on the simulated fluxes. Instead, a revision of the root profile considering a uniform root distribution reduces the underestimation of evaporation during water stress conditions. Despite the limitations of using only one model and a limited number of stations, our results highlight the relevance of root distribution in controlling soil moisture stress, which is likely to be applicable to other LSMs.


2007 ◽  
Vol 8 (5) ◽  
pp. 1082-1097 ◽  
Author(s):  
Joseph A. Santanello ◽  
Mark A. Friedl ◽  
Michael B. Ek

Abstract The convective planetary boundary layer (PBL) integrates surface fluxes and conditions over regional and diurnal scales. As a result, the structure and evolution of the PBL contains information directly related to land surface states. To examine the nature and magnitude of land–atmosphere coupling and the interactions and feedbacks controlling PBL development, the authors used a large sample of radiosonde observations collected at the southern Atmospheric Research Measurement Program–Great Plains Cloud and Radiation Testbed (ARM-CART) site in association with simulations of mixed-layer growth from a single-column PBL/land surface model. The model accurately predicts PBL evolution and realistically simulates thermodynamics associated with two key controls on PBL growth: atmospheric stability and soil moisture. The information content of these variables and their influence on PBL height and screen-level temperature can be characterized using statistical methods to describe PBL–land surface coupling over a wide range of conditions. Results also show that the first-order effects of land–atmosphere coupling are manifested in the control of soil moisture and stability on atmospheric demand for evapotranspiration and on the surface energy balance. Two principal land–atmosphere feedback regimes observed during soil moisture drydown periods are identified that complicate direct relationships between PBL and land surface properties, and, as a result, limit the accuracy of uncoupled land surface and traditional PBL growth models. In particular, treatments for entrainment and the role of the residual mixed layer are critical to quantifying diurnal land–atmosphere interactions.


2017 ◽  
Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Delphine Jennifer Leroux ◽  
Hélène Dewaele ◽  
David Fairbairn ◽  
...  

Abstract. In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SM have an impact on the different control variables. From the assimilation of surface SM, the LDAS is more effective in modifying soil-moisture from the top layers of soil as model sensitivity to surface SM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. The assimilation impact's evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.


2011 ◽  
Vol 12 (6) ◽  
pp. 1299-1320 ◽  
Author(s):  
Ben Livneh ◽  
Pedro J. Restrepo ◽  
Dennis P. Lettenmaier

Abstract A unified land model (ULM) is described that combines the surface flux parameterizations in the Noah land surface model (used in most of NOAA’s coupled weather and climate models) with the Sacramento Soil Moisture Accounting model (Sac; used for hydrologic prediction within the National Weather Service). The motivation was to develop a model that has a history of strong hydrologic performance while having the ability to be run in the coupled land–atmosphere environment. ULM takes the vegetation, snow model, frozen soil, and evapotranspiration schemes from Noah and merges them with the soil moisture accounting scheme from Sac. ULM surface fluxes, soil moisture, and streamflow simulations were evaluated through comparisons with observations from the Ameriflux (surface flux), Illinois Climate Network (soil moisture), and Model Parameter Estimation Experiment (MOPEX; streamflow) datasets. Initially, a priori parameters from Sac and Noah were used, which resulted in ULM surface flux simulations that were comparable to those produced by Noah (Sac does not predict surface energy fluxes). ULM with the a priori parameters had streamflow simulation skill that was generally similar to Sac’s, although it was slightly better (worse) for wetter (more arid) basins. ULM model performance using a set of parameters identified via a Monte Carlo search procedure lead to substantial improvements relative to the a priori parameters. A scheme for transfer of parameters from streamflow simulations to nearby flux and soil moisture measurement points was also evaluated; this approach did not yield conclusive improvements relative to the a priori parameters.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


2019 ◽  
Vol 11 (6) ◽  
pp. 735 ◽  
Author(s):  
Moustapha Tall ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Françoise Guichard ◽  
...  

This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25° × 0.25° and 0.50° × 0.50° spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation.


2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


2009 ◽  
Vol 6 (1) ◽  
pp. 455-499 ◽  
Author(s):  
R. van der Velde ◽  
Z. Su ◽  
M. Ek ◽  
M. Rodell ◽  
Y. Ma

Abstract. In this paper, we investigate the ability of the Noah Land Surface model (LSm) to simulate temperature states in the soil profile and surface fluxes measured during a 7-day dry period at a micrometeorological station on the Tibetan Plateau. Adjustments in soil and vegetation parameterizations required to ameliorate the Noah simulation on these two aspects are presented, which include: (1) Differentiating the soil thermal properties of top- and subsoils, (2) Investigation of the different numerical soil discretizations and (3) Calibration of the parameters utilized to describe the transpiration dynamics of the Plateau vegetation. Through the adjustments in the parameterization of the soil thermal properties (STP) simulation of the soil heat transfer is improved, which results in a reduction of Root Mean Squared Differences (RMSD's) by 14%, 18% and 49% between measured and simulated skin, 5-cm and 25-cm soil temperatures, respectively. Further, decreasing the minimum stomatal resistance (Rc, min) and the optimum temperature for transpiration (Topt) of the vegetation parameterization reduces RMSD's between measured and simulated energy balance components by 30%, 20% and 5% for the sensible, latent and soil heat flux, respectively.


2014 ◽  
Vol 27 (17) ◽  
pp. 6754-6778 ◽  
Author(s):  
Omar V. Müller ◽  
Ernesto Hugo Berbery ◽  
Domingo Alcaraz-Segura ◽  
Michael B. Ek

Abstract This work discusses the land surface–atmosphere interactions during the severe drought of 2008 in southern South America, which was among the most severe in the last 50 years in terms of both intensity and extent. Once precipitation returned to normal values, it took about two months for the soil moisture content and vegetation to recover. The land surface effects were examined by contrasting long-term simulations using a consistent set of satellite-derived annually varying land surface biophysical properties against simulations using the conventional land-cover types in the Weather Research and Forecasting Model–Noah land surface model (WRF–Noah). The new land-cover dataset is based on ecosystem functional properties that capture changes in vegetation status due to climate anomalies and land-use changes. The results show that the use of realistic information of vegetation states enhances the model performance, reducing the precipitation biases over the drought region and over areas of excessive precipitation. The precipitation bias reductions are attributed to the corresponding changes in greenness fraction, leaf area index, stomatal resistance, and surface roughness. The temperature simulation shows a generalized increase, which is attributable to a lower vegetation greenness and a doubling of the stomatal resistance that reduces the evapotranspiration rate. The increase of temperature has a beneficial effect toward the eastern part of the domain with a notable reduction of the bias, but not over the central region where the bias is increased. The overall results suggest that an improved representation of the surface processes may contribute to improving the predictive skill of the model system.


Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

LDAS-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ measurements of soil moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, together with river discharges from the United States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared to an open-loop simulation (i.e. no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions which impacts persist through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.


Sign in / Sign up

Export Citation Format

Share Document