scholarly journals Characteristics of Langmuir Turbulence in the Ocean Mixed Layer

2009 ◽  
Vol 39 (8) ◽  
pp. 1871-1887 ◽  
Author(s):  
Alan L. M. Grant ◽  
Stephen E. Belcher

Abstract This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence. Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.

2017 ◽  
Vol 47 (7) ◽  
pp. 1637-1656 ◽  
Author(s):  
Tobias Kukulka ◽  
Ramsey R. Harcourt

AbstractAccurately scaling Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) is critical for improving ocean, weather, and climate models. The physical processes by which the structure of LT depends on surface waves’ Stokes drift decay length scale are examined. An idealized model for OSBL turbulent kinetic energy (TKE) provides a conceptual framework with three physical processes: TKE transport, dissipation, and production by the Craik–Leibovich (CL) vortex force (VF) associated with the Stokes drift shear. TKE profiles depend on OSBL depth h, surface roughness length z0, and wavenumber k through the nondimensional parameters kh and kz0. These parameters determine the rate and length scale for the dissipation of TKE produced by the CL-VF. For kz0 ≫ 1, TKE input by the CL-VF is governed by a surface flux with TKE rapidly decaying with depth. Only for kz0 < 1 can TKE penetrate deeper into the OSBL, with the TKE penetration depth controlled by kh. Turbulence-resolving large-eddy simulation results support this conceptual framework and indicate that the dominant Langmuir cell size scales with (kh)−1. Within the depth of dominant Langmuir cells, TKE dissipation is approximately balanced by CL-VF production. Shorter waves contribute less to deeper vertical velocity variance 〈w2〉 because the CL-VF is less effective in generating larger-scale LT. Depth-averaged 〈w2〉 scales with a modified Langmuir number Laϕ = (u*/usϕ)1/2, where u* denotes the water-side surface friction velocity and usϕ is a depth-integrated weighted Stokes drift shear or, equivalently, a spectrally filtered surface Stokes drift.


2014 ◽  
Vol 44 (9) ◽  
pp. 2249-2272 ◽  
Author(s):  
Peter E. Hamlington ◽  
Luke P. Van Roekel ◽  
Baylor Fox-Kemper ◽  
Keith Julien ◽  
Gregory P. Chini

Abstract The interactions between boundary layer turbulence, including Langmuir turbulence, and submesoscale processes in the oceanic mixed layer are described using large-eddy simulations of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves. The simulations solve the surface-wave-averaged Boussinesq equations with Stokes drift wave forcing at a resolution that is sufficiently fine to capture small-scale Langmuir turbulence. A simulation without Stokes drift forcing is also performed for comparison. Spatial and spectral properties of temperature, velocity, and vorticity fields are described, and these fields are scale decomposed in order to examine multiscale fluxes of momentum and buoyancy. Buoyancy flux results indicate that Langmuir turbulence counters the restratifying effects of submesoscale eddies, leading to small-scale vertical transport and mixing that is 4 times greater than in the simulations without Stokes drift forcing. The observed fluxes are also shown to be in good agreement with results from an asymptotic analysis of the surface-wave-averaged, or Craik–Leibovich, equations. Regions of potential instability in the flow are identified using Richardson and Rossby numbers, and it is found that mixed gravitational/symmetric instabilities are nearly twice as prevalent when Langmuir turbulence is present, in contrast to simulations without Stokes drift forcing, which are dominated by symmetric instabilities. Mixed layer depth calculations based on potential vorticity and temperature show that the mixed layer is up to 2 times deeper in the presence of Langmuir turbulence. Differences between measures of the mixed layer depth based on potential vorticity and temperature are smaller in the simulations with Stokes drift forcing, indicating a reduced incidence of symmetric instabilities in the presence of Langmuir turbulence.


2016 ◽  
Vol 46 (3) ◽  
pp. 863-886 ◽  
Author(s):  
Brandon G. Reichl ◽  
Dong Wang ◽  
Tetsu Hara ◽  
Isaac Ginis ◽  
Tobias Kukulka

AbstractThe Stokes drift of surface waves significantly modifies the upper-ocean turbulence because of the Craik–Leibovich vortex force (Langmuir turbulence). Under tropical cyclones the contribution of the surface waves varies significantly depending on complex wind and wave conditions. Therefore, turbulence closure models used in ocean models need to explicitly include the sea state–dependent impacts of the Langmuir turbulence. In this study, the K-profile parameterization (KPP) first-moment turbulence closure model is modified to include the explicit Langmuir turbulence effect, and its performance is tested against equivalent large-eddy simulation (LES) experiments under tropical cyclone conditions. First, the KPP model is retuned to reproduce LES results without Langmuir turbulence to eliminate implicit Langmuir turbulence effects included in the standard KPP model. Next, the Lagrangian currents are used in place of the Eulerian currents in the KPP equations that calculate the bulk Richardson number and the vertical turbulent momentum flux. Finally, an enhancement to the turbulent mixing is introduced as a function of the nondimensional turbulent Langmuir number. The retuned KPP, with the Lagrangian currents replacing the Eulerian currents and the turbulent mixing enhanced, significantly improves prediction of upper-ocean temperature and currents compared to the standard (unmodified) KPP model under tropical cyclones and shows improvements over the standard KPP at constant moderate winds (10 m s−1).


2018 ◽  
Vol 48 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Brodie Pearson

AbstractThis study shows that the presence of Stokes drift us in the turbulent upper ocean induces a near-surface Eulerian current that opposes the Stokes drift. This current is distinct from previously studied anti-Stokes currents because it does not rely on the presence of planetary rotation or mean lateral gradients. Instead, the anti-Stokes flow arises from an interaction between the Stokes drift and turbulence. The new anti-Stokes flow is antiparallel to us near the ocean surface, is parallel to us at depth, and integrates to zero over the depth of the boundary layer. The presence of Stokes drift in large-eddy simulations (LES) is shown to induce artificial energy production caused by a combination of the new anti-Stokes flow and LES numerics. As a result, care must be taken when designing and interpreting simulations of realistic wave forcing, particularly as rotation becomes weak and/or us becomes perpendicular to the surface wind stress. The mechanism of the artificial energy production is demonstrated for a generalized LES subgrid scheme.


2013 ◽  
Vol 730 ◽  
pp. 464-490 ◽  
Author(s):  
James C. McWilliams ◽  
Baylor Fox-Kemper

AbstractA geostrophic, hydrostatic, frontal or filamentary flow adjusts conservatively to accommodate a surface gravity wave field with wave-averaged, Stokes-drift vortex and Coriolis forces in an altered balanced state. In this altered state, the wave-balanced perturbations have an opposite cross-front symmetry to the original geostrophic state; e.g. the along-front flow perturbation is odd-symmetric about the frontal centre while the geostrophic flow is even-symmetric. The adjustment tends to make the flow scale closer to the deformation radius, and it induces a cross-front shape displacement in the opposite direction to the overturning effects of wave-aligned down-front and up-front winds. The ageostrophic, non-hydrostatic, adjusted flow may differ from the initial flow substantially, with velocity and buoyancy perturbations that extend over a larger and deeper region than the initial front and Stokes drift. The largest effect occurs for fronts that are wider than the mixed layer deformation radius and that fill about two-thirds of a well-mixed surface layer, with the Stokes drift spanning only the shallowest part of the mixed layer. For even deeper mixed layers, and especially for thinner or absent mixed layers, the wave-balanced adjustments are not as large.


2020 ◽  
Vol 50 (8) ◽  
pp. 2323-2339
Author(s):  
Yasushi Fujiwara ◽  
Yutaka Yoshikawa

AbstractWave-resolving simulations of monochromatic surface waves and Langmuir circulations (LCs) under an idealized condition are performed to investigate the dynamics of wave–current mutual interaction. When the Froude number (the ratio of the friction velocity of wind stress imposed at the surface and wave phase speed) is large, waves become refracted by the downwind jet associated with LCs and become amplitude modulated in the crosswind direction. In such cases, the simulations using the Craik–Leibovich (CL) equation with a prescribed horizontally uniform Stokes drift profile are found to underestimate the intensity of LCs. Vorticity budget analysis reveals that horizontal shear of Stokes drift induced by the wave modulation tilts the wind-driven vorticity to the downwind direction, intensifying the LCs that caused the waves to be modulated. Such an effect is not reproduced in the CL equation unless the Stokes drift of the waves modulated by LCs is prescribed. This intensification mechanism is similar to the CL1 mechanism in that the horizontal shear of the Stokes drift plays a key role, but it is more likely to occur because the shear in this interaction is automatically generated by the LCs whereas the shear in the CL1 mechanism is retained only when a particular phase relation between two crossing waves is kept locked for many periods.


2019 ◽  
Vol 875 ◽  
pp. 173-224 ◽  
Author(s):  
Anqing Xuan ◽  
Bing-Qing Deng ◽  
Lian Shen

The effects of a water surface wave on the vorticity in the turbulence underneath are studied for Langmuir turbulence using wave-phase-resolved large-eddy simulation. The simulations are performed on a dynamically evolving wave-surface-fitted grid such that the phase-resolved wave motions and their effects on the turbulence are explicitly captured. This study focuses on the vorticity structures and dynamics in Langmuir turbulence driven by a steady and co-aligned progressive wave and surface shear stress. For the first time, the detailed vorticity dynamics of the wave–turbulence interaction in Langmuir turbulence in a wave-phase-resolved frame is revealed. The wave-phase-resolved simulation provides detailed descriptions of many characteristic features of Langmuir turbulence, such as elongated quasi-streamwise vortices. The simulation also reveals the variation of the strength and the inclination angles of the vortices with the wave phase. The variation is found to be caused by the periodic stretching and tilting of the wave orbital straining motions. The cumulative effect of the wave on the wave-phase-averaged vorticity is analysed using the Lagrangian average. It is discovered that, in addition to the tilting effect induced by the Lagrangian mean shear gradient of the wave, the phase correlation between the vorticity fluctuations and the wave orbital straining is also important to the cumulative vorticity evolution. Both the fluctuation correlation effect and the mean tilting effect are found to amplify the streamwise vorticity. On the other hand, for the vertical vorticity, the fluctuation correlation effect cancels the mean tilting effect, and the net change of the vertical vorticity by the wave straining is negligible. As a result, the wave straining enhances only the streamwise vorticity and cumulatively tilts vertical vortices towards the streamwise direction. The above processes are further quantified analytically. The role of the fluctuation correlation effect in the wave-phase-averaged vorticity dynamics provides a deeper understanding of the physical processes underlying the wave–turbulence interaction in Langmuir turbulence.


Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


2019 ◽  
Vol 49 (11) ◽  
pp. 2935-2959 ◽  
Author(s):  
Brandon G. Reichl ◽  
Qing Li

AbstractIn this study we develop a new parameterization for turbulent mixing in the ocean surface boundary layer (OSBL), including the effect of Langmuir turbulence. This new parameterization builds on a recent study (Reichl and Hallberg 2018, hereafter RH18), which predicts the available energy for turbulent mixing against stable stratification driven by shear and convective turbulence. To investigate the role of Langmuir turbulence in the framework of RH18, we utilize data from a suite of previously published large-eddy simulation (LES) experiments (Li and Fox-Kemper 2017, hereafter LF17) with and without Langmuir turbulence under different idealized forcing conditions. We find that the parameterization of RH18 is able to reproduce the mixing simulated by the LES in the non-Langmuir cases, but not the Langmuir cases. We therefore investigate the enhancement of the integrated vertical buoyancy flux within the entrainment layer in the presence of Langmuir turbulence using the LES data. An additional factor is introduced in the RH18 framework to capture the enhanced mixing due to Langmuir turbulence. This additional factor depends on the surface-layer averaged Langmuir number with a reduction in the presence of destabilizing surface buoyancy fluxes. It is demonstrated that including this factor within the RH18 OSBL turbulent mixing parameterization framework captures the simulated effect of Langmuir turbulence in the LES, which can be used for simulating the effect of Langmuir turbulence in climate simulations. This new parameterization is compared to the KPP-based Langmuir entrainment parameterization introduced by LF17, and differences are explored in detail.


2009 ◽  
Vol 39 (5) ◽  
pp. 1244-1257 ◽  
Author(s):  
Yign Noh ◽  
Gahyun Goh ◽  
Siegfried Raasch ◽  
Micha Gryschka

Abstract The formation of a diurnal thermocline in the ocean mixed layer under a stabilizing buoyancy flux was simulated successfully by large-eddy simulation, reproducing various features consistent with observation. The analysis of the simulation result revealed that the formation of a diurnal thermocline passes through two different phases: the formation of a thermocline (formation stage) and increasing thickness of the thermocline thereafter (growth stage). Turbulent kinetic energy (TKE) flux dominates TKE production within the mixed layer, but turbulence maintained by shear production at the thermocline causes stratification below the mixed layer. In addition, once the thermocline is formed, both the gradient and flux Richardson numbers maintain constant values at the thermocline. It was also found that a diurnal thermocline cannot be formed in the absence of both wave breaking and Langmuir circulation. Furthermore, the effects of stratification on turbulence were investigated based on the time series of various physical variables of turbulence at the diurnal thermocline and within the mixed layer, and the mechanism for diurnal thermocline formation is discussed.


Sign in / Sign up

Export Citation Format

Share Document