scholarly journals The Effective Static Stability Experienced by Eddies in a Moist Atmosphere

2011 ◽  
Vol 68 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Paul A. O’Gorman

Abstract Water vapor directly affects the dynamics of atmospheric eddy circulations through the release of latent heat. But it is difficult to include latent heat release in dynamical theories because of the associated nonlinearity (precipitation generally occurs where there is upward motion). A new effective static stability is derived that fundamentally captures the effect of latent heat release on moist eddy circulations. It differs from the usual dry static stability by an additive term that depends on temperature and a parameter measuring the up–down asymmetry of vertical velocity statistics. Latent heat release reduces the effective static stability experienced by eddies but cannot reduce it to zero so long as there are nonprecipitating regions of the eddies. Evaluation based on reanalysis data indicates that the effective static stability in the lower troposphere ranges from ∼80% of the dry static stability at high latitudes to ∼25% in the tropics. The effective static stability provides a solution to the longstanding problem of how to adapt dry dynamical theories to the moist circulations in the atmosphere. Its utility for climate change problems is illustrated based on simulations with an idealized general circulation model. It is shown to help account for changes in the thermal stratification of the extratropical troposphere, the extent of the Hadley cells, the intensity of extratropical transient eddies, and the extratropical eddy length.

2019 ◽  
Vol 5 (4) ◽  
pp. 345-357 ◽  
Author(s):  
Tiffany A. Shaw

AbstractState-of-the-art climate models predict the zonal mean mid-latitude circulation will undergo a poleward shift and seasonally and hemispherically dependent intensity changes in the future. Here I review the mechanisms put forward to explain the zonal mean mid-latitude circulation response to increased carbon dioxide (CO2) concentration. The mechanisms are grouped according to their thermodynamic starting point, which are thought to arise from processes independent of the zonal mean mid-latitude circulation response. There are 24 mechanisms and 8 thermodynamic starting points: (i) increased latent heat release aloft in the tropics, (ii) increased dry static stability and tropopause height outside the tropics, (iii) radiative cooling of the stratosphere, (iv) Hadley cell expansion, (v) increased specific humidity following the Clausius-Clapeyron relation, (vi) cloud radiative effect changes, (vii) turbulent surface heat flux changes, and (viii) decreased surface meridional temperature gradient. I argue progress can be made by testing the thermodynamic starting points. I review recent tests of the increased latent heat release aloft in the tropics starting point, i.e., prescribing diabatic perturbations, quantifying the transient response to an abrupt CO2 increase and imposing latitudinally dependent CO2 concentration. Finally, I provide a future outlook for improving our understanding of predicted changes in the zonal mean mid-latitude circulation.


2013 ◽  
Vol 70 (7) ◽  
pp. 2234-2250 ◽  
Author(s):  
Jeff Willison ◽  
Walter A. Robinson ◽  
Gary M. Lackmann

Abstract Theoretical, observational, and modeling studies have established an important role for latent heating in midlatitude cyclone development. Models simulate some contribution from condensational heating to cyclogenesis, even with relatively coarse grid spacing (on the order of 100 km). Our goal is to more accurately assess the diabatic contribution to storm-track dynamics and cyclogenesis while bridging the gap between climate modeling and synoptic dynamics. This study uses Weather Research and Forecasting model (WRF) simulations with 120- and 20-km grid spacing to demonstrate the importance of resolving additional mesoscale features that are associated with intense precipitation and latent heat release within extratropical cyclones. Sensitivity to resolution is demonstrated first with a case study, followed by analyses of 10 simulated winters over the North Atlantic storm track. Potential vorticity diagnostics are employed to isolate the influences of latent heating on storm dynamics, and terms in the Lorenz energy cycle are analyzed to determine the resulting influences on the storm track. The authors find that the intensities of individual storms and their aggregate behavior in the storm track are strongly sensitive to horizontal resolution. An enhanced positive feedback between cyclone intensification and latent heat release is seen at higher resolution, resulting in a systematic increase in eddy intensity and a stronger storm track relative to the coarser simulations. These results have implications for general circulation models and their projections of climate change.


2011 ◽  
Vol 139 (6) ◽  
pp. 1683-1707 ◽  
Author(s):  
Jason M. Cordeira ◽  
Lance F. Bosart

Abstract This paper examines the cyclogenesis of the “Perfect Storms” of late October and early November 1991 over the North Atlantic and focuses on the influence of Hurricane Grace (HG) toward their development. The two storms considered are the “Perfect Storm” (PS) that underwent a warm seclusion process and an extratropical cyclone (EC1) with two development phases. HG, which initially formed via tropical transition (TT), influenced the first phase of EC1 via reduced atmospheric static stability and enhanced low-level baroclinicity. As a result, deep moist convection and latent heat release produced maxima in midtropospheric diabatic heating and lower-tropospheric potential vorticity (PV) that aided the development of EC1. Backward air parcel trajectories and large diabatic contributions to eddy available potential energy (APE) generation suggests that EC1 developed as a diabatic Rossby vortex (DRV)-like feature. The second and explosively deepening phase of EC1 occurred as the cyclone coupled with an upper-tropospheric PV disturbance (PVD) over the eastern North Atlantic. Backward air parcel trajectories demonstrate the explosive deepening of EC1 involved airstreams originating from east of HG and from over the Labrador Sea. Parcel trajectories and a large baroclinic contribution to eddy APE generation further suggests that the two-phase development of EC1 may have involved a DRV-like feature. The subsequent recurvature and extratropical transition (ET) of HG occurred in the warm sector of the PS downstream of a second upper-tropospheric PVD over the western North Atlantic. Reduced atmospheric static stability, enhanced warm air advection, and strong latent heat release during the recurvature and ET of HG contributed to the development of a strong, zonally oriented warm front and the warm seclusion of the PS. Parcel trajectory analysis demonstrates that the PS warm seclusion involved the isolation of air parcels by a bent-back warm front that were warmed via sensible heating from the underlying Gulf Stream.


2005 ◽  
Vol 133 (7) ◽  
pp. 1913-1937 ◽  
Author(s):  
Michael J. Brennan ◽  
Gary M. Lackmann

Abstract The role of a diabatically produced lower-tropospheric potential vorticity (PV) maximum in determining the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone is investigated. Operational numerical weather prediction (NWP) models performed poorly with this storm, even within 24 h of the event, as they were unable to properly forecast the westward extent of heavy precipitation over the Carolinas and mid-Atlantic. The development of an area of incipient precipitation (IP) around 0600 UTC 24 January over the southeastern United States prior to rapid cyclogenesis was also poorly forecasted by the operational NWP models. It is hypothesized that the lower-tropospheric diabatic PV maximum initially produced by the IP was important to subsequent inland moisture transport over the Carolinas and mid-Atlantic. A PV budget confirms that latent heat release in the midtroposphere associated with the IP led to the initial formation of a PV maximum in the lower troposphere that propagated eastward in association with the IP to the Atlantic coast late on 24 January. The impact of this PV maximum on the westward moisture transport was quantified by piecewise Ertel PV inversion. Results from the inversion show that the balanced flow associated with this evolving cyclonic PV maximum contributed substantially to the onshore moisture flux into the Carolinas and Virginia. The balanced flow associated with the PV anomaly also contributed to quasigeostrophic forcing for ascent in the region. These findings suggest that accurate numerical prediction of the precipitation distribution in this event requires adequate representation of the IP and its associated impacts on the PV distribution.


2021 ◽  
pp. 1-52
Author(s):  
Gregory Tierney ◽  
Walter A. Robinson ◽  
Gary Lackmann ◽  
Rebecca Miller

AbstractHigh-impact events such as heat waves and droughts are often associated with persistent positive geopotential height anomalies (PAs). Understanding how PA activity will change in a future warmer climate is therefore fundamental to projecting associated changes in weather and climate extremes. This is a complex problem because the dynamics of PAs and their associated blocking activity are still poorly understood. Furthermore, climate-change influences on PA activity may be geographically dependent and encompass competing influences. To expose the salient impacts of climate change, we use an oceanic channel configuration of the Weather Research and Forecasting model (WRF) in a bivariate experiment focused on changes in environmental temperature, moisture, and baroclinicity. The 500-hPa wind speed and flow variability are found to increase with increasing temperature and baroclinicity, driven by increases in latent heat release and a stronger virtual temperature gradient. Changes to 500-hPa sinuosity are negligible. PAs are objectively identified at the 500-hPa level using an anomaly threshold method. When using a fixed threshold, PA trends indicate increased activity and strength with warming, but decreased activity and strength with Arctic amplification. Use of a climate-relative threshold hides these trends and highlights the importance of accurate characterization of the mean flow. Changes in PA activity mirror corresponding changes in 500-hPa flow variability and are found to be attributable to changes in three distinct dynamical mechanisms: baroclinic wave activity, virtual temperature effects, and latent heat release.


Author(s):  
A. M. Savchenko ◽  
Yu. V. Konovalov ◽  
A. V. Laushkin

The purpose of this work is to show that during mixing, two hidden (latent) processes proceed simultaneously and compensate each other: the first initiates an increase in the average heat capacity, equal in magnitude to the entropy of mixing, which requires energy absorption to ensure a constant temperature, the second initiates simultaneous latent heat release by strengthening interatomic bonds. The passage of these two processes during mixing shows the identity of the vibrational and configurational (statistical) entropy.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


2000 ◽  
Author(s):  
Ramachandra V. Devireddy ◽  
John C. Bischof ◽  
Perry H. Leo ◽  
John S. Lowengrub

Abstract The latent heat of fusion, ΔHf of a cryobiological medium (a solute laden aqueous solution) is a crucial parameter in the cryopreservation process. The latent heat has often been approximated by that of pure water (∼ 335 mJ/mg). However, recent calorimetric (DSC - Pyris 1) measurements suggest that the actual magnitude of latent heat of fusion during freezing of solute laden aqueous systems is far less. Fourteen different pre-nucleated solute laden aqueous systems (NaCl-H2O, Phosphate Buffered Saline or PBS, serum free RPMI, cell culture medium, glycerol and Anti Freeze Protein solutions) were found to have significantly lower ΔHf than that of pure water (Devireddy and Bischof, 1998). In the present study additional calorimetric experiments are performed at 1, 5 and 20 °C/min in five representative cryobiological media (isotonic or 1× NaCl-H2O, 10× NaCl-H2O, 1× PBS, 5× PBS and 10× PBS) to determine the kinetics of ice crystallization. The temperature (T) and time (t) dependence of the latent heat release is measured. The experimental data shows that at a fixed temperature, the fraction of heat released at higher cooling rates (5 and 20 °C/min) is lower than at 1 °C/min for all the solutions studied. We then sought a simple model that could predict the experimentally measured behavior and examined the full set of heat and mass transport equations during the freezing process in a DSC sample pan. The model neglects the interaction between the growing ice crystals and is most appropriate during the early stages of the freezing process. An examination of the coefficients in the heat and mass transport equations shows that heat transport occurs much more rapidly than solute transport. Hence, the full model reduces to one in which the temperature profile is constant in space while the solute concentration profile obeys the full time and space dependent diffusion equation. The model reveals the important physical parameters controlling the mass transport at the freezing interface and further elucidates the experimental results, i.e. the temperature and time dependence of the latent heat release.


2012 ◽  
Vol 69 (4) ◽  
pp. 1405-1426 ◽  
Author(s):  
Julien Lambaerts ◽  
Guillaume Lapeyre ◽  
Vladimir Zeitlin

Abstract The authors undertake a detailed analysis of the influence of water vapor condensation and latent heat release upon the evolution of the baroclinic instability. The framework consists in a two-layer rotating shallow-water model with moisture coupled to dynamics through mass exchange between the layers due to condensation/precipitation. The model gives all known in literature models of this kind as specific limits. It is fully nonlinear and ageostrophic. The reference state is a baroclinic Bickley jet. The authors first study its “dry” linear instability and then use the most unstable mode to initialize high-resolution numerical simulations of the life cycle of the instability in nonprecipitating (moisture being a passive tracer) and precipitating cases. A new-generation well-balanced finite-volume scheme is used in these simulations. The evolution in the nonprecipitating case follows the standard cyclonic wave-breaking life cycle of the baroclinic instability, which is reproduced with a high fidelity. In the precipitating case, the onset of condensation significantly increases the growth rate of the baroclinic instability at the initial stages due to production of available potential energy by the latent heat release. Condensation occurs in frontal regions and wraps up around the cyclone, which is consistent with the moist cyclogenesis theory and observations. Condensation induces a clear-cut cyclone–anticyclone asymmetry. The authors explain the underlying mechanism and show how it modifies the equilibration of the flow at the late stages of the saturation of the instability. In spite of significant differences in the evolution, only weak differences in various norms of the perturbations remain between precipitating and nonprecipitating cases at the end of the saturation process.


Sign in / Sign up

Export Citation Format

Share Document