scholarly journals An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder*

2010 ◽  
Vol 11 (6) ◽  
pp. 1234-1262 ◽  
Author(s):  
Craig R. Ferguson ◽  
Eric F. Wood

Abstract The skill of instantaneous Atmospheric Infrared Sounder (AIRS) retrieved near-surface meteorology, including surface skin temperature (Ts), air temperature (Ta), specific humidity (q), and relative humidity (RH), as well as model-derived surface pressure (Psurf) and 10-m wind speed (w), is evaluated using collocated National Climatic Data Center (NCDC) in situ observations, offline data from the North American Land Data Assimilation System (NLDAS), and geostationary remote sensing (RS) data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Such data are needed for RS-based water cycle monitoring in areas without readily available in situ data. The study is conducted over the continental United States and Africa for a period of more than 6 years (2002–08). For both regions, it provides for the first time the geographic distribution of AIRS retrieval performance. Through conditional sampling, attribution of retrieval errors to scene atmospheric and surface conditions is performed. The findings support previous assertions that performance degrades with cloud fraction and that (positive) bias enhances with altitude. In general AIRS is biased warm and dry. In certain regions, strong AIRS–NCDC correlation suggests that bias-driven errors, which can be substantial, are correctable. The utility of the error characteristics for prescribing the input-induced uncertainty of RS retrieval models is demonstrated through two applications: a microwave soil moisture retrieval algorithm and the Penman–Monteith evapotranspiration model. An important side benefit of this study is the verification of NLDAS forcing.

2021 ◽  
Author(s):  
Jingyi Huang ◽  
Ankur Desai ◽  
Jun Zhu ◽  
Alfred Hartemink ◽  
Paul Stoy ◽  
...  

<p>Current in situ soil moisture monitoring networks are sparsely distributed while remote sensing satellite soil moisture maps have a very coarse spatial resolution. In this study, an empirical global surface soil moisture (SSM) model was established via fusion of in situ continental and regional scale soil moisture networks, remote sensing data (SMAP and Sentinel-1) and high-resolution land surface parameters (e.g., soil texture, terrain) using a quantile random forest (QRF) algorithm. The model had a spatial resolution of 100m and performed moderately well under cultivated, herbaceous, forest, and shrub soils (R<sup>2</sup> = 0.524, RMSE = 0.07 m<sup>3</sup> m<sup>−3</sup>). It has a relatively good transferability at the regional scale among different continental and regional networks (mean RMSE = 0.08–0.10 m<sup>3</sup> m<sup>−3</sup>). The global model was then applied to map SSM dynamics at 30–100m across a field-scale network (TERENO-Wüstebach) in Germany and an 80-ha irrigated cropland in Wisconsin, USA. Without local training data, the model was able to delineate the variations in SSM at the field scale but contained large bias. With the addition of 10% local training datasets (“spiking”), the bias of the model was significantly reduced. The QRF model was also affected by the resolution and accuracy of soil maps. It was concluded that the empirical model has the potential to be applied elsewhere across the globe to map SSM at the regional to field scales for research and applications. Future research is required to improve the performance of the model by incorporating more field-scale soil moisture sensor networks and high-resolution soil maps as well as assimilation with process-based water flow models.</p>


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1316
Author(s):  
Woubet G. Alemu ◽  
Michael C. Wimberly

Despite the sparse distribution of meteorological stations and issues with missing data, vector-borne disease studies in Ethiopia have been commonly conducted based on the relationships between these diseases and ground-based in situ measurements of climate variation. High temporal and spatial resolution satellite-based remote-sensing data is a potential alternative to address this problem. In this study, we evaluated the accuracy of daily gridded temperature and rainfall datasets obtained from satellite remote sensing or spatial interpolation of ground-based observations in relation to data from 22 meteorological stations in Amhara Region, Ethiopia, for 2003–2016. Famine Early Warning Systems Network (FEWS-Net) Land Data Assimilation System (FLDAS) interpolated temperature showed the lowest bias (mean error (ME) ≈ 1–3 °C), and error (mean absolute error (MAE) ≈ 1–3 °C), and the highest correlation with day-to-day variability of station temperature (COR ≈ 0.7–0.8). In contrast, temperature retrievals from the blended Advanced Microwave Scanning Radiometer on Earth Observing Satellite (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) passive microwave and Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature data had higher bias and error. Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) rainfall showed the least bias and error (ME ≈ −0.2–0.2 mm, MAE ≈ 0.5–2 mm), and the best agreement (COR ≈ 0.8), with station rainfall data. In contrast FLDAS had the higher bias and error and the lowest agreement and Global Precipitation Mission/Tropical Rainfall Measurement Mission (GPM/TRMM) data were intermediate. This information can inform the selection of geospatial data products for use in climate and disease research and applications.


2021 ◽  
Author(s):  
Ingalise Kindstedt ◽  
Kristin Schild ◽  
Dominic Winski ◽  
Karl Kreutz ◽  
Luke Copland ◽  
...  

Abstract. Remote sensing data are a crucial tool for monitoring climatological changes and glacier response in areas inaccessible for in situ measurements. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product provides temperature data for remote glaciated areas where weather stations are sparse or absent, such as the St. Elias Mountains (Yukon, Canada). However, MODIS LSTs in the St. Elias Mountains have shown a cold bias relative to available weather station measurements, the source of which is unknown. Here, we show that the MODIS cold bias likely results from the occurrence of near-surface temperature inversions rather than from the MODIS sensor’s large footprint size or from poorly constrained snow emissivity values used in LST calculations. We find that a cold bias in remote sensing temperatures is present not only in MODIS LST products, but also in Advanced Spaceborne Thermal Emissions Radiometer (ASTER) and Landsat surface temperature products, both of which have a much smaller footprint (90–120 m) than MODIS (1 km). In all three datasets, the cold bias was most pronounced in the winter (mean cold bias > 8 °C), and least pronounced in the spring and summer (mean cold bias < 2 °C). We also find this enhanced seasonal bias in MODIS brightness temperatures, before the incorporation of snow surface emissivity into the LST calculation. Finally, we find the MODIS cold bias to be consistent in magnitude and seasonal distribution with modeled temperature inversions, and to be most pronounced under conditions that facilitate near-surface inversions, namely low incoming solar radiation and wind speeds, at study sites Icefield Divide (60.68° N, 139.78° W, 2,603 m a.s.l) and Eclipse Icefield (60.84° N, 139.84° W, 3,017 m a.s.l.). These results demonstrate that efforts to improve the accuracy of MODIS LSTs should focus on understanding near-surface physical processes rather than refining the MODIS sensor or LST algorithm. In the absence of a physical correction for the cold bias, we apply a statistical correction, enabling the use of mean annual MODIS LSTs to qualitatively and quantitatively examine temperatures in the St. Elias Mountains and their relationship to melt and mass balance.


2020 ◽  
Author(s):  
Depeng Zuo ◽  
Siyang Cai ◽  
Zongxue Xu ◽  
Hong Yang

&lt;p&gt;Most research on drought assessment adopted historical in-situ observations, however, there has been increased data availability from remote sensing during the recent years. This study utilizes the two sources of data in drought assessment. Using the historical in-situ observations, the spatiotemporal variations of meteorological drought were firstly investigated by calculating the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at 1, 3, 6-month time scales in Northeast China. Using remote sensing data, the combined deficit index (CDI) for agricultural drought assessment was computed based on tri-monthly sum of deficit in antecedent rainfall and deficit in monthly NDVI at land cover type and sub-type levels in the same region. In the end, the agricultural drought calculated by the CDI was evaluated against the deficit in crop yield, as well as deficit in Land Surface Temperature (LST) and Evapotranspiration (ET), in order to verify the applicability of the CDI for agricultural drought assessment in the study region. The results showed that the CDI has better correlations with the SPEI (R&lt;sup&gt;2&lt;/sup&gt;=0.48) than the SPI (R&lt;sup&gt;2&lt;/sup&gt;=0.05) at 3-month scales with weight factor a=0.5 in dry farming areas. The spatial pattern of the CDI showed that the area of agricultural drought increased from July to October. In addition, a significant linear correlation was found between the CDI and anomaly in annual agricultural yield (R&lt;sup&gt;2&lt;/sup&gt;=0.55), and anomaly in monthly land surface temperature (R&lt;sup&gt;2&lt;/sup&gt;=0.42). The results prove that the CDI calculated by remote sensing data is not only a reliable indicator for agricultural drought assessment in Northeast China, but also provides useful information for agricultural drought disaster prevention and mitigation, and water management improvement.&lt;/p&gt;


2021 ◽  
Vol 13 (5) ◽  
pp. 882
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Wouter Verhoef

This study analysed the uncertainty and sensitivity of core and intermediate input variables of a remote-sensing-data-based Penman–Monteith (PM-Mu) evapotranspiration (ET) model. We derived absolute and relative uncertainties of core measured meteorological and remote-sensing-based atmospheric and land surface input variables and parameters of the PM-Mu model. Uncertainties of important intermediate data components (i.e., net radiation and aerodynamic and surface resistances) were also assessed. To estimate the instrument measurement uncertainties of the in situ meteorological input variables, we used the reported accuracies of the manufacturers. Observational accuracies of the remote sensing input variables (land surface temperature (LST), land surface emissivity (εs), leaf area index (LAI), land surface albedo (α)) were derived from peer-reviewed satellite sensor validation reports to compute their uncertainties. The input uncertainties were propagated to the final model’s evapotranspiration estimation uncertainty. Our analysis indicated relatively high uncertainties associated with relative humidity (RH), and hence all the intermediate variables associated with RH, like vapour pressure deficit (VPD) and the surface and aerodynamic resistances. This is in contrast to other studies, which reported LAI uncertainty as the most influential. The semi-arid conditions and seasonality of the regional South African climate and high temporal frequency of the variations in VPD, air and land surface temperatures could explain the uncertainties observed in this study. The results also showed the ET algorithm to be most sensitive to the air-land surface temperature difference. An accurate assessment of those in situ and remotely sensed variables is required to achieve reliable evapotranspiration model estimates in these generally dry regions and climates. A significant advantage of the remote-sensing-based ET method remains its full area coverage in contrast to classic-point (station)-based ET estimates.


2009 ◽  
Vol 6 (1) ◽  
pp. 921-942
Author(s):  
R. Liu ◽  
J. Wen ◽  
X. Wang ◽  
L. Wang ◽  
H. Tian ◽  
...  

Abstract. The Loess Plateau is located in north of China and has a significant impact on the climate and ecosystem evolvement over the East Asian continent. Based on the land surface energy balance theory, the potential of using Medium Resolution Imaging Spectrometer (onboard sensor of the Environmental Satellite) remote sensing data on 7, 11 and 27 June 2005 is explored. The "split-window" algorithm is used to retrieve surface temperature from the Advanced the Along-Track Scanning Radiometer, another onboard senor of the Environmental Satellite. Then the near surface net radiation, sensible heat flux and soil heat flux are estimated by using the developed algorithm. We introduce a simple algorithm to predict the heat flux partitioning between the soil and vegetation. Combining the sunshine hours, air temperature, sunshine duration and wind speed measured by weather stations, a model for estimating daily ET is proposed. The instantaneous ET is also converted to daily value. Comparison of latent heats flux retrieved by remote sensing data with ground observation from eddy covariance flux system during Loess Plateau land surface process field Experiment, the maximum and minimum error of this approach are 10.96% and 4.80% respectively, the cause of the bias is also explored and discussed.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


2019 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Cheng Yang ◽  
Tonghua Wu ◽  
Jiemin Wang ◽  
Jimin Yao ◽  
Ren Li ◽  
...  

The ground surface soil heat flux (G0) quantifies the energy transfer between the atmosphere and the ground through the land surface. However; it is difficult to obtain the spatial distribution of G0 in permafrost regions because of the limitation of in situ observation and complication of ground surface conditions. This study aims at developing an improved G0 parameterization scheme applicable to permafrost regions of the Qinghai-Tibet Plateau under clear-sky conditions. We validated several existing remote sensing-based models to estimate G0 by analyzing in situ measurement data. Based on the validation of previous models on G0; we added the solar time angle to the G0 parameterization scheme; which considered the phase difference problem. The maximum values of RMSE and MAE between “measured G0” and simulated G0 using the improved parameterization scheme and in situ data were calculated to be 6.102 W/m2 and 5.382 W/m2; respectively. When the error of the remotely sensed land surface temperature is less than 1 K and the surface albedo measured is less than 0.02; the accuracy of estimates based on remote sensing data for G0 will be less than 5%. MODIS data (surface reflectance; land surface temperature; and emissivity) were used to calculate G0 in a 10 x 10 km region around Tanggula site; which is located in the continuous permafrost region with long-term records of meteorological and permafrost parameters. The results obtained by the improved scheme and MODIS data were consistent with the observation. This study enhances our understanding of the impacts of climate change on the ground thermal regime of permafrost and the land surface processes between atmosphere and ground surface in cold regions.


Sign in / Sign up

Export Citation Format

Share Document