scholarly journals Ensemble Evaluation of Hydrologically Enhanced Noah-LSM: Partitioning of the Water Balance in High-Resolution Simulations over the Little Washita River Experimental Watershed

2011 ◽  
Vol 12 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Enrique Rosero ◽  
Lindsey E. Gulden ◽  
Zong-Liang Yang ◽  
Luis G. De Goncalves ◽  
Guo-Yue Niu ◽  
...  

Abstract The ability of two versions of the Noah land surface model (LSM) to simulate the water cycle of the Little Washita River experimental watershed is evaluated. One version that uses the standard hydrological parameterizations of Noah 2.7 (STD) is compared another version that replaces STD’s subsurface hydrology with a simple aquifer model and topography-related surface and subsurface runoff parameterizations (GW). Simulations on a distributed grid at fine resolution are compared to the long-term distribution of observed daily-mean runoff, the spatial statistics of observed soil moisture, and locally observed latent heat flux. The evaluation targets the typical behavior of ensembles of models that use realistic, near-optimal sets of parameters important to runoff. STD and GW overestimate the ratio of runoff to evapotranspiration. In the subset of STD and GW runs that best reproduce the timing and the volume of streamflow, the surface-to-subsurface runoff ratio is overestimated and simulated streamflow is much flashier than observations. Both models’ soil columns wet and dry too quickly, implying that there are structural shortcomings in the formulation of STD that cannot be overcome by adding GW’s increased complexity to the model. In its current formulation, GW extremely underestimates baseflow’s contribution to total runoff and requires a shallow water table to function realistically. In the catchment (depth to water table >10 m), GW functions as a simple bucket model. Because model parameters are likely scale and site dependent, the need for even “physically based” models to be extensively calibrated for all domains on which they are applied is underscored.

2013 ◽  
Vol 14 (4) ◽  
pp. 1119-1138 ◽  
Author(s):  
Huqiang Zhang ◽  
Bernard Pak ◽  
Ying Ping Wang ◽  
Xinyao Zhou ◽  
Yongqiang Zhang ◽  
...  

Abstract The terrestrial water cycle in the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model has been evaluated across a range of temporal and spatial domains. A series of offline experiments were conducted using the forcing data from the second Global Soil Wetness Project (GSWP-2) for the period of 1986–95, but with its default parameter settings. Results were compared against GSWP-2 multimodel ensembles and a range of observationally driven datasets. CABLE-simulated global mean evapotranspiration (ET) and runoff agreed well with the GSWP-2 multimodel climatology and observations, and the spatial variations of ET and runoff across 150 large catchments were well captured. Nevertheless, at regional scales it underestimated ET in the tropics and had some significant runoff errors. The model sensitivity to a number of selected parameters is further examined. Results showed some significant model uncertainty caused by its sensitivity to soil wilting point as well as to the root water uptaking efficiency and canopy water storage parameters. The sensitivity was large in tropical rain forest and midlatitude forest regions, where the uncertainty caused by the model parameters was comparable to a large part of its difference against the GSWP-2 multimodel mean. Furthermore, the discrepancy among the CABLE perturbation experiments caused by its sensitivity to model parameters was equivalent to about 20%–40% of the intermodel difference among the GSWP-2 models, which was primarily caused by different model structure/processes. Although such results are model dependent, they suggest that soil/vegetation parameters could be another source of uncertainty in estimating global surface energy and water budgets.


2020 ◽  
pp. 052
Author(s):  
Jean-Christophe Calvet ◽  
Jean-Louis Champeaux

Cet article présente les différentes étapes des développements réalisés au CNRM des années 1990 à nos jours pour spatialiser à diverses échelles les simulations du modèle Isba des surfaces terrestres. Une attention particulière est portée sur l'intégration, dans le modèle, de données satellitaires permettant de caractériser la végétation. Deux façons complémentaires d'introduire de l'information géographique dans Isba sont présentées : cartographie de paramètres statiques et intégration au fil de l'eau dans le modèle de variables observables depuis l'espace. This paper presents successive steps in developments made at CNRM from the 1990s to the present-day in order to spatialize the simulations of the Isba land surface model at various scales. The focus is on the integration in the model of satellite data informative about vegetation. Two complementary ways to integrate geographic information in Isba are presented: mapping of static model parameters and sequential assimilation of variables observable from space.


2016 ◽  
Vol 20 (1) ◽  
pp. 143-159 ◽  
Author(s):  
N. Le Vine ◽  
A. Butler ◽  
N. McIntyre ◽  
C. Jackson

Abstract. Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.


2015 ◽  
Vol 16 (4) ◽  
pp. 1502-1520 ◽  
Author(s):  
Elizabeth A. Clark ◽  
Justin Sheffield ◽  
Michelle T. H. van Vliet ◽  
Bart Nijssen ◽  
Dennis P. Lettenmaier

Abstract A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.


2021 ◽  
Author(s):  
Eduardo Emilio Sanchez-Leon ◽  
Natascha Brandhorst ◽  
Bastian Waldowski ◽  
Ching Pui Hung ◽  
Insa Neuweiler ◽  
...  

<p>The success of data assimilation systems strongly depends on the suitability of the generated ensembles. While in theory data assimilation should correct the states of an ensemble of models, especially if model parameters are included in the update, its effectiveness will depend on many factors, such as ensemble size, ensemble spread, and the proximity of the prior ensemble simulations to the data. In a previous study, we generated an ensemble-based data-assimilation framework to update model states and parameters of a coupled land surface-subsurface model. As simulation system we used the Terrestrial Systems Modeling Platform TerrSysMP, with the community land-surface model (CLM) coupled to the subsurface model Parflow. In this work, we used the previously generated ensemble to assess the effect of uncertain input forcings (i.e. precipitation), unknown subsurface parameterization, and/or plant physiology in data assimilation. The model domain covers a rectangular area of 1×5km<sup>2</sup>, with a uniform depth of 50m. The subsurface material is divided into four units, and the top soil layers consist of three different soil types with different vegetation. Streams are defined along three of the four boundaries of the domain. For data assimilation, we used the TerrsysMP PDAF framework. We defined a series of data assimilation experiments in which sources of uncertainty were considered individually, and all additional settings of the ensemble members matched those of the reference. To evaluate the effect of all sources of uncertainty combined, we designed an additional test in which the input forcings, subsurface parameters, and the leaf area index of the ensemble were all perturbed. In all these tests, the reference model had homogenous subsurface units and the same grid resolution as all models of the ensemble. We used point measurements of soil moisture in all data assimilation experiments. We concluded that precipitation dominates the dynamics of the simulations, and perturbing the precipitation fields for the ensemble have a major impact in the performance of the assimilation. Still, considerable improvements are observed compared to open-loop simulations. In contrast, the effect of variable plant physiology was minimal, with no visible improvement in relevant fluxes such as evapotranspiration. As expected, improved ensemble predictions are propagated longer in time when parameters are included in the update.</p>


2020 ◽  
Author(s):  
Jiaxin Tian ◽  
Jun Qin ◽  
Kun Yang

<p>Soil moisture plays a key role in land surface processes. Both remote sensing and model simulation have their respective limitations in the estimation of soil moisture on a large spatial scale. Data assimilation is a promising way to merge remote sensing observation and land surface model (LSM), thus having a potential to acquire more accurate soil moisture. Two mainstream assimilation algorithms (variational-based and sequential-based) both need model and observation uncertainties due to their great impact on assimilation results. Besides, as far as land surface models are concerned, model parameters have a significant implication for simulation. However, how to specify these two uncertainties and parameters has been confusing for a long time. A dual-cycle assimilation algorithm, which consists of two cycles, is proposed for addressing the above issue. In the outer cycle, a cost function is constructed and minimized to estimate model parameters and uncertainties in both model and observation. In the inner cycle, a sequentially based filtering method is implemented to estimate soil moisture with the parameters and uncertainties estimated in the outer cycle. For the illustration of the effectiveness of the proposed algorithm, the Advanced Microwave Scanning Radiometer of earth Observing System (AMSR-E) brightness temperatures are assimilated into land surface model with a radiative transfer model as the observation operator in three experimental fields, including Naqu and Ngari on the Tibetan Plateau, and Coordinate Enhanced Observing (CEOP) reference site on Mongolia. The results indicate that the assimilation algorithm can significantly improve soil moisture estimation.</p>


2014 ◽  
Vol 15 (2) ◽  
pp. 631-649 ◽  
Author(s):  
Claire Magand ◽  
Agnès Ducharne ◽  
Nicolas Le Moine ◽  
Simon Gascoin

Abstract The Durance watershed (14 000 km2), located in the French Alps, generates 10% of French hydropower and provides drinking water to 3 million people. The Catchment land surface model (CLSM), a distributed land surface model (LSM) with a multilayer, physically based snow model, has been applied in the upstream part of this watershed, where snowfall accounts for 50% of the precipitation. The CLSM subdivides the upper Durance watershed, where elevations range from 800 to 4000 m within 3580 km2, into elementary catchments with an average area of 500 km2. The authors first show the difference between the dynamics of the accumulation and ablation of the snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) images and snow-depth measurements. The extent of snow cover increases faster during accumulation than during ablation because melting occurs at preferential locations. This difference corresponds to the presence of a hysteresis in the snow-cover depletion curve of these catchments, and the CLSM was adapted by implementing such a hysteresis in the snow-cover depletion curve of the model. Different simulations were performed to assess the influence of the parameterizations on the water budget and the evolution of the extent of the snow cover. Using six gauging stations, the authors demonstrate that introducing a hysteresis in the snow-cover depletion curve improves melting dynamics. They conclude that their adaptation of the CLSM contributes to a better representation of snowpack dynamics in an LSM that enables mountainous catchments to be modeled for impact studies such as those of climate change.


Sign in / Sign up

Export Citation Format

Share Document