scholarly journals Urban Heat Island Research in Phoenix, Arizona: Theoretical Contributions and Policy Applications

2012 ◽  
Vol 93 (4) ◽  
pp. 517-530 ◽  
Author(s):  
Winston T. L. Chow ◽  
Dean Brennan ◽  
Anthony J. Brazel

Over the past 60 years, metropolitan Phoenix, Arizona, has been among the fastest-growing urban areas in the United States, and this rapid urbanization has resulted in an urban heat island (UHI) of substantial size and intensity. During this time, an uncommon amount of UHI-specific research, relative to other cities in North America, occurred within its boundaries. This review investigates the possible reasons and motivations underpinning the large body of work, as well as summarizing specific themes, approaches, and theoretical contributions arising from such study. It is argued that several factors intrinsic to Phoenix were responsible for the prodigious output: strong applied urban climate research partnerships between several agencies (such as the academy, the National Weather Service, private energy firms, and municipal governments); a high-quality, long-standing network of urban meteorological stations allowing for relatively fine spatial resolution of near-surface temperature data; and a high level of public and media interest in the UHI. Three major research themes can be discerned: 1) theoretical contributions from documenting, modeling, and analyzing the physical characteristics of the UHI; 2) interdisciplinary investigation into its biophysical and social consequences; and 3) assessment and evaluation of several UHI mitigation techniques. Also examined herein is the successful implementation of sustainable urban climate policies within the metropolitan area. The authors note the importance of understanding and applying local research results during the policy formation process.

2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

<p>Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline – in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.</p><p>Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0°C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1°C/year on average.</p><p>Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.</p><p> </p><p><strong>References:</strong></p><p>E. Elhacham and P. Alpert, "Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001–2014)", <em>Earth’s Future</em>, 4, 2016. https://doi.org/10.1002/2015EF000325</p><p>E. Elhacham and P. Alpert, "Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai", submitted.</p>


2021 ◽  
Vol 21 (17) ◽  
pp. 13687-13711
Author(s):  
Michael Biggart ◽  
Jenny Stocker ◽  
Ruth M. Doherty ◽  
Oliver Wild ◽  
David Carruthers ◽  
...  

Abstract. Information on the spatiotemporal characteristics of Beijing's urban–rural near-surface air temperature difference, known as the canopy layer urban heat island (UHI), is important for future urban climate management strategies. This paper investigates the variation of near-surface air temperatures within Beijing at a neighbourhood-scale resolution (∼ 100 m) during winter 2016 and summer 2017. We perform simulations using the urban climate component of the ADMS-Urban model with land surface parameters derived from both local climate zone classifications and OpenStreetMap land use information. Through sensitivity simulations, the relative impacts of surface properties and anthropogenic heat emissions on the temporal variation of Beijing's UHI are quantified. Measured UHI intensities between central Beijing (Institute of Atmospheric Physics) and a rural site (Pinggu) during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) campaigns, peak during the evening at ∼ 4.5 ∘C in both seasons. In winter, the nocturnal UHI is dominated by anthropogenic heat emissions but is underestimated by the model. Higher-resolution anthropogenic heat emissions may capture the effects of local sources (e.g. residential buildings and adjacent major roads). In summer, evening UHI intensities are underestimated, especially during heatwaves. The inability to fully replicate the prolonged release of heat stored in the urban fabric may explain this. Observed negative daytime UHI intensities in summer are more successfully captured when surface moisture levels in central Beijing are increased. However, the spatial correlation between simulated air temperatures and satellite-derived land surface temperatures is stronger with a lower urban moisture scenario. This result suggests that near-surface air temperatures at the urban meteorological site are likely influenced by fine-scale green spaces that are unresolved by the available land cover data and demonstrates the expected differences between surface and air temperatures related to canopy layer advection. This study lays the foundations for future studies of heat-related health risks and UHI mitigation strategies across Beijing and other megacities.


2020 ◽  
Author(s):  
Michael Biggart ◽  
Jenny Stocker ◽  
Ruth M. Doherty ◽  
Oliver Wild ◽  
David Carruthers ◽  
...  

Abstract. Information on the spatiotemporal characteristics of Beijing's urban-rural near-surface air temperature difference, known as the canopy layer urban heat island (UHI), is important for future urban climate management strategies. This paper investigates the variation of near-surface air temperatures within Beijing at a neighbourhood-scale resolution (~ 100 m) during winter 2016 and summer 2017. We perform simulations using the urban climate component of the ADMS-Urban model with land surface parameters derived from both Local Climate Zone classifications and OpenStreetMap land use information. Through sensitivity simulations, the relative impacts of surface properties and anthropogenic heat emissions on the temporal variation of Beijing's UHI are quantified. Measured UHI intensities between central Beijing (Institute of Atmospheric Physics) and a rural site (Pinggu) during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) campaigns, peak during the evening at ~ 4.5 °C in both seasons. In winter, the nocturnal UHI is dominated by anthropogenic heat emissions but is underestimated by the model. Higher resolution anthropogenic heat emissions may capture the effects of local sources (e.g. residential buildings and adjacent major roads). In summer, evening UHI intensities are underestimated, especially during heatwaves. The inability to fully replicate the prolonged release of heat stored in the urban fabric may explain this. Observed negative daytime UHI intensities in summer are more successfully captured when surface moisture levels in central Beijing are increased. However, the spatial correlation between simulated air temperatures and satellite-derived land surface temperatures is stronger with a lower urban moisture scenario. This result suggests that near-surface air temperatures at the urban meteorological site are likely influenced by fine-scale green spaces that are unresolved by the available land cover data and demonstrates the expected differences between surface and air temperatures related to canopy layer advection. This study lays the foundations for future studies of heat-related health risks and UHI mitigation strategies across Beijing and other megacities.


2020 ◽  
Vol 20 (11) ◽  
pp. 6479-6493 ◽  
Author(s):  
Wenchao Han ◽  
Zhanqing Li ◽  
Fang Wu ◽  
Yuwei Zhang ◽  
Jianping Guo ◽  
...  

Abstract. The urban heat island intensity (UHII) is the temperature difference between urban areas and their rural surroundings. It is commonly attributed to changes in the underlying surface structure caused by urbanization. Air pollution caused by aerosol particles can affect the UHII through changing (1) the surface energy balance by the aerosol radiative effect (ARE) and (2) planetary-boundary-layer (PBL) stability and airflow intensity by modifying thermodynamic structure, which is referred to as the aerosol dynamic effect (ADE). By analyzing satellite data and ground-based observations collected from 2001 to 2010 at 35 cities in China and using the WRF-Chem model, we find that the impact of aerosols on UHII differs considerably: reducing the UHII in summer but increasing the UHII in winter. This seasonal contrast is proposed to be caused by the different strengths of the ARE and ADE between summer and winter. In summer, the ARE on UHII is dominant over the ADE, cooling down surface temperature more strongly in urban areas than in rural areas because of much higher aerosol loading, and offsets the urban heating, therefore weakening UHII. In winter, however, the ADE is more dominant, because aerosols stabilize the PBL more in the polluted condition, weakening the near-surface heat transport over urban areas in both vertical and horizontal directions. This means that the heat accumulated in urban areas is dispersed less effectively, and thus the UHII is enhanced. These findings shed new light on the impact of the interaction between urbanization-induced surface changes and air pollution on urban climate.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


2021 ◽  
Vol 13 (11) ◽  
pp. 5918
Author(s):  
Giacomo Chiesa ◽  
Yingyue Li

Urban heat island and urban-driven climate variations are recognized issues and may considerably affect the local climatic potential of free-running technologies. Nevertheless, green design and bioclimatic early-design analyses are generally based on typical rural climate data, without including urban effects. This paper aims to define a simple approach to considering urban shapes and expected effects on local bioclimatic potential indicators to support early-design choices. Furthermore, the proposed approach is based on simplifying urban shapes to simplify analyses in early-design phases. The proposed approach was applied to a sample location (Turin, temperate climate) and five other climate conditions representative of Eurasian climates. The results show that the inclusion of the urban climate dimension considerably reduced rural HDD (heating degree-days) from 10% to 30% and increased CDD (cooling degree-days) from 70% to 95%. The results reveal the importance of including the urban climate dimension in early-design phases, such as building programming in which specific design actions are not yet defined, to support the correct definition of early-design bioclimatic analyses.


2013 ◽  
Vol 52 (11) ◽  
pp. 2418-2433 ◽  
Author(s):  
A. M. E. Winguth ◽  
B. Kelp

AbstractHourly surface temperature differences between Dallas–Fort Worth, Texas, metropolitan and rural sites have been used to calculate the urban heat island from 2001 to 2011. The heat island peaked after sunset and was particularly strong during the drought and heat wave in July 2011, reaching a single-day instantaneous maximum value of 5.4°C and a monthly mean maximum of 3.4°C, as compared with the 2001–11 July average of 2.4°C. This severe drought caused faster warming of rural locations relative to the metropolitan area in the morning as a result of lower soil moisture content, which led to an average negative heat island in July 2011 of −2.3°C at 1100 central standard time. The ground-based assessment of canopy air temperature at screening level has been supported by a remotely sensed surface estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, highlighting a dual-peak maximum heat island in the major city centers of Dallas and Fort Worth. Both ground-based and remotely sensed spatial analyses of the maximum heat island indicate a northwest shift, the result of southeast winds in July 2011 of ~2 m s−1 on average. There was an overall positive trend in the urban heat island of 0.14°C decade−1 in the Dallas–Fort Worth metropolitan area from 2001 to 2011, due to rapid urbanization. Superimposed on this trend are significant interannual and decadal variations that influence the urban climate.


2017 ◽  
Vol 11 (4) ◽  
pp. 80
Author(s):  
Ehsan Sharifi ◽  
Ali Soltani

Urban structure, hard surfaces and shortage of vegetation cause an artificial temperature increase in cities, known as the urban heat island effect. This paper determines the daily patterns of urban heat in Adelaide, Australia. The near-surface temperature profile of Adelaide was mapped in 60 journeys alongside a straight cross route connecting Adelaide Hills to the West Beach between 26 July and 15 August 2013. Results indicate that the most intense urban-rural temperature differences occurred during midnight in Adelaide. However, the afternoon urban heat had more temperature variation in the urban area. In the late afternoon, the near-surface urban heat fluctuates by 2°C within three kilometres and by 1.2°C in just one kilometer. Afternoon heat stress can vary based on space configurations and urban surface covers. Afternoon heat stress causes the highest heat load on urban dwellers. A better understanding of daily urban heat variations in cities assists urban policy making and public life management in the context of climate change.


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


Sign in / Sign up

Export Citation Format

Share Document