scholarly journals Diurnal Variation of TRMM/LIS Lightning Flash Radiances

2017 ◽  
Vol 98 (7) ◽  
pp. 1453-1470 ◽  
Author(s):  
Themistoklis Chronis ◽  
William J. Koshak

Abstract This study provides, for the first time, an analysis of the climatological diurnal variations in the lightning flash radiance data product ε from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS). The ε values over 13 years (2002–14), and over a global scale (∼38°S–38°N), reveal novel and remarkably consistent regional and seasonal patterns as a function of the local solar time (LST). In particular, the diurnal variation of ε (over both continental and oceanic regions) is characterized by a monotonic increase from late afternoon (∼2000 LST), attaining a maximum around 0900 LST, followed by a decreasing trend. The continental (oceanic) ε values reach a broader minimum spanning from ∼1500 to 1900 LST (∼1800 to 2000). The relative diurnal amplitude variation in continental ε is about 45%, compared to about 15% for oceanic ε. This study confirms that the results are not affected by diurnal biases associated with instrument detection or other statistical artifacts. Notable agreement is shown between the diurnal variations of ε and the global-scale (∼38°S–38°N) mesoscale convective system areal extent. Comparisons with recently published diurnal variations of cloud-to-ground lightning peak current over the United States also exhibit a marked similarity. Given the novelty of these findings, a few tentative hypotheses about the underlying physical mechanism(s) are discussed.

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
John R. Lawson ◽  
William A. Gallus ◽  
Corey K. Potvin

The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind damage across the United States, is associated with poor skill in convection-allowing numerical model forecasts. Given the decrease in convection-allowing grid spacings within many operational forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS development in a real-data numerical simulation. Two ensembles were generated: one with a single domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback. Ensemble members were generated from their control member with a stochastic kinetic-energy backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution, allowing more entrainment of dry air and hence increased evaporative cooling.


2011 ◽  
Vol 26 (4) ◽  
pp. 468-486 ◽  
Author(s):  
Jennifer L. Palucki ◽  
Michael I. Biggerstaff ◽  
Donald R. MacGorman ◽  
Terry Schuur

Abstract Two small multicellular convective areas within a larger mesoscale convective system that occurred on 20 June 2004 were examined to assess vertical motion, radar reflectivity, and dual-polarimetric signatures between flash and non-flash-producing convection. Both of the convective areas had similar life cycles and general structures. Yet, one case produced two flashes, one of which may have been a cloud-to-ground flash, while the other convective area produced no flashes. The non-lightning-producing case had a higher peak reflectivity up to 6 km. Hence, if a reflectivity-based threshold were used as a precursor to lightning, it would have yielded misleading results. The peak upward motion in the mixed-phase region for both cases was 8 m s−1 or less. However, the lightning-producing storm contained a wider region where the updraft exceeded 5 m s−1. Consistent with the broader updraft region, the lightning-producing case exhibited a distinct graupel signature over a broader region than the non-lightning-producing convection. Slight differences in vertical velocity affected the quantity of graupel present in the mixed-phase region, thereby providing the subtle differences in polarimetric signatures that were associated with lightning activity. If the results here are generally applicable, then graupel volume may be a better precursor to a lightning flash than radar reflectivity. With the dual-polarimetric upgrade to the national observing radar network, it should be possible to better distinguish between lightning- and non-lightning-producing areas in weak convective systems that pose a potential safety hazard to the public.


2021 ◽  
Author(s):  
Terry Lustig ◽  
sarah klassen ◽  
Damian Evans ◽  
Robert French ◽  
Ian Moffat

This paper examines the construction and design of a 7-km long embankment, probably builtfor King Jayavarman IV between 928 and 941 CE, as part of a new capital. We calculate thatthe capacities of the outlets were too small, and conclude that the embankment failed, probablywithin a decade of construction, so that the benefits of the reservoir stored by the embankmentand the access road on top of it were lessened substantially. We explain how the design wassub-optimal for construction, and that while the layout had a high aesthetic impact, theprocesses for ensuring structural integrity were poor. Simple and inexpensive steps to securethe weir were not undertaken. We speculate that this early failure may have contributed to thedecision to return the royal court and the capital of the Khmer Empire to the Angkor region,marking a critically important juncture in regional history.Abbreviations: APHRODITE, Asian Precipitation – Highly Resolved Observational DataIntegration Towards Evaluation (of Water Resources); ARI, annual recurrence interval; ASL,above sea level; DIAS, Data Integration and Analysis System; EFEO, École françaised'Extrême-Orient; GPR, ground penetrating radar; HEC-GeoRAS, Hydrologic EngineeringCenter: GIS tools for support of HEC-RAS; HEC-RAS, Hydrologic Engineering Center: RiverAnalysis System; HEC-HMS, Hydrologic Engineering Center: Hydrologic Modeling System;MCS, mesoscale convective system; RMSE, root mean square error; SRTM, NASA ShuttleRadar Topography Mission; TRMM, Tropical Rainfall Measuring Mission


2015 ◽  
Vol 72 (2) ◽  
pp. 623-640 ◽  
Author(s):  
Weixin Xu ◽  
Steven A. Rutledge

Abstract This study uses Dynamics of the Madden–Julian Oscillation (DYNAMO) shipborne [Research Vessel (R/V) Roger Revelle] radar and Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) datasets to investigate MJO-associated convective systems in specific organizational modes [mesoscale convective system (MCS) versus sub-MCS and linear versus nonlinear]. The Revelle radar sampled many “climatological” aspects of MJO convection as indicated by comparison with the long-term TRMM PR statistics, including areal-mean rainfall (6–7 mm day−1), convective intensity, rainfall contributions from different morphologies, and their variations with MJO phase. Nonlinear sub-MCSs were present 70% of the time but contributed just around 20% of the total rainfall. In contrast, linear and nonlinear MCSs were present 10% of the time but contributed 20% and 50%, respectively. These distributions vary with MJO phase, with the largest sub-MCS rainfall fraction in suppressed phases (phases 5–7) and maximum MCS precipitation in active phases (phases 2 and 3). Similarly, convective–stratiform rainfall fractions also varied significantly with MJO phase, with the highest convective fractions (70%–80%) in suppressed phases and the largest stratiform fraction (40%–50%) in active phases. However, there are also discrepancies between the Revelle radar and TRMM PR. Revelle radar data indicated a mean convective rain fraction of 70% compared to 55% for TRMM PR. This difference is mainly due to the reduced resolution of the TRMM PR compared to the ship radar. There are also notable differences in the rainfall contributions as a function of convective intensity between the Revelle radar and TRMM PR. In addition, TRMM PR composites indicate linear MCS rainfall increases after MJO onset and produce similar rainfall contributions to nonlinear MCSs; however, the Revelle radar statistics show the clear dominance of nonlinear MCS rainfall.


2020 ◽  
Vol 148 (5) ◽  
pp. 2111-2133 ◽  
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Alexandre O. Fierro ◽  
Youngsun Jung ◽  
Chengsi Liu ◽  
...  

Abstract The recently launched Geostationary Operational Environmental Satellite “R-series” (GOES-R) satellites carry the Geostationary Lightning Mapper (GLM) that measures from space the total lightning rate in convective storms at high spatial and temporal frequencies. This study assimilates, for the first time, real GLM total lightning data in an ensemble Kalman filter (EnKF) framework. The lightning flash extent density (FED) products at 10-km pixel resolution are assimilated. The capabilities to assimilate GLM FED data are first implemented into the GSI-based EnKF data assimilation (DA) system and tested with a mesoscale convective system (MCS). FED observation operators based on graupel mass or graupel volume are used. The operators are first tuned through sensitivity experiments to determine an optimal multiplying factor to the operator, before being used in FED DA experiments FEDM and FEDV that use the graupel-mass or graupel-volume-based operator, respectively. Their results are compared to a control experiment (CTRL) that does not assimilate any FED data. Overall, both DA experiments outperform CTRL in terms of the analyses and short-term forecasts of FED and composite/3D reflectivity. The assimilation of FED is primarily effective in regions of deep moist convection, which helps improve short-term forecasts of convective threats, including heavy precipitation and lightning. Direct adjustments to graupel mass via observation operator as well as adjustments to other model state variables through flow-dependent ensemble cross covariance within EnKF are shown to work together to generate model-consistent analyses and overall improved forecasts.


2008 ◽  
Vol 136 (8) ◽  
pp. 3087-3105 ◽  
Author(s):  
Vagner Anabor ◽  
David J. Stensrud ◽  
Osvaldo L. L. de Moraes

Abstract Serial mesoscale convective system (MCS) events with lifetimes over 18 h and up to nearly 70 h are routinely observed over southeastern South America from infrared satellite imagery during the spring and summer. These events begin over the southern La Plata River basin, with individual convective systems generally moving eastward with the cloud-layer-mean wind. However, an important and common subset of these serial MCS events shows individual MCSs moving to the east or southeast, yet the region of convective development as a whole shifts upstream to the north or northwest. Analyses of the composite mean environments from 10 of these upstream-propagating serial MCS events using NCEP–NCAR reanalysis data events indicates that the synoptic conditions resemble those found in mesoscale convective complex environments over the United States. The serial MCS events form within an environment of strong low-level warm advection and strong moisture advection between the surface and 700 hPa from the Amazon region southward. One feature that appears to particularly influence the low-level flow pattern at early times is a strong surface anticyclone located just off the coast of Brazil. At upper levels, the MCSs develop on the anticyclonic side of the entrance region to an upper-level jet. Mean soundings show that the atmosphere is moist from the surface to near 500 hPa, with values of convective available potential energy above 1200 J kg−1 at the time of system initiation. System dissipation and continued upstream propagation to the north and northwest occurs in tandem with a surface high pressure system that crosses the Andes Mountains from the west.


2021 ◽  
pp. 1-52
Author(s):  
Wenjun Cui ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Zhe Feng

AbstractThis study uses machine learning methods, specifically the random forest (RF), on a radar-based mesoscale convective system (MCS) tracking dataset to classify the five types of linear MCS morphology in the contiguous United States during the period 2004-2016. The algorithm is trained using radar- and satellite-derived spatial and morphological parameters, and reanalysis environmental information from 5-yr manually identified nonlinear and five linear MCS modes. The algorithm is then used to automate the classification of linear MCSs over 8 years with high accuracy, providing a systematic, long-term climatology of linear MCSs. Results reveal that nearly 40% of MCSs are classified as linear MCSs, in which half of the linear events belong to the type of system having a leading convective line. The occurrence of linear MCSs shows large annual and seasonal variations. On average, 113 linear MCSs occur annually during the warm season (through March to October), with most of these events clustered from May through August in the central eastern Great Plains. MCS characteristics, including duration, propagation speed, orientation, and system cloud size, have large variability among the different linear modes. The systems having a trailing convective line and the systems having a back-building area of convection typically move more slowly and have higher precipitation rate, and thus have higher potential in producing extreme rainfall and flash flooding. Analysis of the environmental conditions associated with linear MCSs show that the storm-relative flow is of most importance in determining the organization mode of linear MCSs.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Xinyao Qian ◽  
Haoliang Wang

Lightning simulation is important for a variety of applications, including lightning forecast, atmospheric chemical simulation, and lightning data assimilation. In this study, the potential of five storm parameters (graupel volume, precipitation ice mass, radar echo volume, maximum updraft, and updraft volume) to be used as the proxy for the diagnosis of gridded total lightning flash rates has been investigated in a convection-allowing model. A mesoscale convective system occurred in the Guangdong province of China was selected as the test case. Radar data assimilation was used to improve the simulation accuracy of the convective clouds, hence providing strong instantaneous correlations between observed and simulated storm signatures. The areal coverage and magnitude of the simulated lightning flash rates were evaluated by comparing to those of the total lightning observations. Subjective and the Fractions Skill Score (FSS) evaluations suggest that all the five proxies tested in this study are useful to indicate general tendencies for the occurrence, region, and time of lightning at convection-allowing scale (FSS statistics for the threshold of 1 flash per 9 km2 per hour were around 0.7 for each scheme). The FSS values were decreasing as the lightning flash rate thresholds used for FSS computation increased for all the lightning diagnostic schemes with different proxies. For thresholds from 1 to 3 and 16 to 20 flashes per 9 km2 per hour, the graupel contents related schemes achieved higher FSS values compared to the other three schemes. For thresholds from 5 to 15 flashes per 9 km2 per hour, the updraft volume related scheme yielded the largest FSS. When the thresholds of lightning flash rates were greater than 13 flashes per 9 km2 per hour, the FSS values were below 0.5 for all the lightning diagnostic schemes with different proxies.


2020 ◽  
Author(s):  
Sidha Sankalpa Moharana ◽  
Rajesh Singh

<p>A Mesoscale Convective System (MCS), consisting of three Super Cells<br>formed over South-east Indian, is assessed in detail with satellite and ground based<br>data-sets. The MCS under investigation generated a total of Ten (10) upward<br>electrical discharges (9 Sprites and 1 Gigantic Jet) commonly named as Transient<br>Luminous Events (TLEs). The TLEs were recorded from TLE observation station<br>located at Allahabad, India. The event occurred in the Post-Monsoon period of 2013<br>on October 7, during 15-23 UT hours. The MCS was spread over a region of 25000 sq.<br>Kilometers. A lowest cloud top temperature value of -84.7 0 C was observed in the<br>mature stage of the MCS, during 2130 UT hours, and the cloud top altitude was<br>reaching 17.6 km. The coldest cloud top region was covering an average area of<br>13000 sq. Km. The measured Convective Available Potential Energy (CAPE) value was<br>606.9 J/kg at 00 UT on 7 th October which dropped to 211 J/kg at 00 UT on 8 th<br>October. The mean lightning flash rate during the formation and maturity stages of<br>the MCS was around 46.03 min -1 . During the entire lifespan of the thunderstorm,<br>peak currents were found to be reaching ±400 kA. Such high electric currents,<br>extreme cold temperature and towering altitudes of the convective complexes show<br>how much a MCS is dynamically active and the TLEs which it produced are known to<br>electrically connect the lower atmosphere to the upper space environment.</p>


Sign in / Sign up

Export Citation Format

Share Document