scholarly journals An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential

2019 ◽  
Vol 100 (9) ◽  
pp. 1739-1752 ◽  
Author(s):  
Elena Saltikoff ◽  
Katja Friedrich ◽  
Joshua Soderholm ◽  
Katharina Lengfeld ◽  
Brian Nelson ◽  
...  

AbstractWeather radars have been widely used to detect and quantify precipitation and nowcast severe weather for more than 50 years. Operational weather radars generate huge three-dimensional datasets that can accumulate to terabytes per day. So it is essential to review what can be done with existing vast amounts of data, and how we should manage the present datasets for the future climatologists. All weather radars provide the reflectivity factor, and this is the main parameter to be archived. Saving reflectivity as volumetric data in the original spherical coordinates allows for studies of the three-dimensional structure of precipitation, which can be applied to understand a number of processes, for example, analyzing hail or thunderstorm modes. Doppler velocity and polarimetric moments also have numerous applications for climate studies, for example, quality improvement of reflectivity and rain rate retrievals, and for interrogating microphysical and dynamical processes. However, observational data alone are not useful if they are not accompanied by sufficient metadata. Since the lifetime of a radar ranges between 10 and 20 years, instruments are typically replaced or upgraded during climatologically relevant time periods. As a result, present metadata often do not apply to past data. This paper outlines the work of the Radar Task Team set by the Atmospheric Observation Panel for Climate (AOPC) and summarizes results from a recent survey on the existence and availability of long time series. We also provide recommendations for archiving current and future data and examples of climatological studies in which radar data have already been used.

2021 ◽  
Author(s):  
Emir Yapıcı ◽  
Ahmet Öztopal ◽  
Erdem Erdi

<p>As is known, rainfall varies spatially and temporally with regard to intensity and frequency. Floods, related to extreme rainfall cases, cause stress on geophysical system and community if climate change is considered. For this reason determining of extreme rainfall patterns is very important. While obtaining three dimensional status of hydrometors in atmosphere is not possible only by using ground station networks, it is possible by using weather radars. Therefore, weather radars provide significant contribution to studies about getting cloud and rainfall patterns. The aim of this study is to investigate spatial patterns of extreme rainfall events in Antalya and Muğla cities which are located on the Mediterranean coast of Türkiye. Firstly, hourly rainfall (RN1) and rain rate (SRI) products of 2 C band doppler radars and raingauge data between 2015 and 2020 will be processed by a software named MeteoRadar which is developed by İstanbul Technical University. It is capable of reading, decoding, parallel processing and visualization. Secondly, extreme rainfall patterns will be obtained over 2 study areas. Finally, after validation by using raingauge data, results will be discussed in detail.</p><p><strong>Key Words</strong>: Antalya, Extreme rainfall, MeteoRadar, Muğla, RN1, SRI, Weather radar.</p>


2006 ◽  
Vol 21 (5) ◽  
pp. 802-823 ◽  
Author(s):  
Valliappa Lakshmanan ◽  
Travis Smith ◽  
Kurt Hondl ◽  
Gregory J. Stumpf ◽  
Arthur Witt

Abstract With the advent of real-time streaming data from various radar networks, including most Weather Surveillance Radars-1988 Doppler and several Terminal Doppler Weather Radars, it is now possible to combine data in real time to form 3D multiple-radar grids. Herein, a technique for taking the base radar data (reflectivity and radial velocity) and derived products from multiple radars and combining them in real time into a rapidly updating 3D merged grid is described. An estimate of that radar product combined from all the different radars can be extracted from the 3D grid at any time. This is accomplished through a formulation that accounts for the varying radar beam geometry with range, vertical gaps between radar scans, the lack of time synchronization between radars, storm movement, varying beam resolutions between different types of radars, beam blockage due to terrain, differing radar calibration, and inaccurate time stamps on radar data. Techniques for merging scalar products like reflectivity, and innovative, real-time techniques for combining velocity and velocity-derived products are demonstrated. Precomputation techniques that can be utilized to perform the merger in real time and derived products that can be computed from these three-dimensional merger grids are described.


2017 ◽  
Vol 14 (128) ◽  
pp. 20161065 ◽  
Author(s):  
Martin Egli

Molecular clocks are the product of natural selection in organisms from bacteria to human and their appearance early in evolution such as in the prokaryotic cyanobacterium Synechococcus elongatus suggests that these timers served a crucial role in genetic fitness. Thus, a clock allows cyanobacteria relying on photosynthesis and nitrogen fixation to temporally space the two processes and avoid exposure of nitrogenase carrying out fixation to high levels of oxygen produced during photosynthesis. Fascinating properties of molecular clocks are the long time constant, their precision and temperature compensation. Although these are hallmarks of all circadian oscillators, the actual cogs and gears that control clocks vary widely between organisms, indicating that circadian timers evolved convergently multiple times, owing to the selective pressure of an environment with a daily light/dark cycle. In S. elongatus , the three proteins KaiA, KaiB and KaiC in the presence of ATP constitute a so-called post-translational oscillator (PTO). The KaiABC PTO can be reconstituted in an Eppendorf tube and keeps time in a temperature-compensated manner. The ease by which the KaiABC clock can be studied in vitro has made it the best-investigated molecular clock system. Over the last decade, structures of all three Kai proteins and some of their complexes have emerged and mechanistic aspects have been analysed in considerable detail. This review focuses on the central gear of the S. elongatus clock and only enzyme among the three proteins: KaiC. Our determination of the three-dimensional structure of KaiC early in the quest for a better understanding of the inner workings of the cyanobacterial timer revealed its unusual architecture and conformational differences and unique features of the two RecA-like domains constituting KaiC. The structure also pinpointed phosphorylation sites and differential interactions with ATP molecules at subunit interfaces, and helped guide experiments to ferret out mechanistic aspects of the ATPase, auto-phosphorylation and auto-dephosphorylation reactions catalysed by the homo-hexamer. Comparisons between the structure of KaiC and those of nanomachines such as F1-ATPase and CaMKII also exposed shared architectural features (KaiC/ATPase), mechanistic principles (KaiC/CaMKII) and phenomena, such as subunit exchange between hexameric particles critical for function (clock synchronization, KaiABC; memory-storage, CaMKII).


2021 ◽  
Author(s):  
Ning Wang ◽  
Dulun Wang

Abstract The problem of the benzene molecular structure has not been solved for a long time. This research proposes a new concept of covalent bonds based on the existing theory: each electron shared by the nucleus corresponds to a half-valent bond, and a half-valent bond can be formed between interval carbon atoms of the benzene ring. A new theory was established. Quantum mechanical calculations results can quantitatively explain experimental results, such as the hydrogenation heat and ultraviolet spectroscopy of benzene. It has solved more than one hundred years of difficult problems. The design of the new structural forms of benzene molecules shows half-valent bonds with dotted lines, which have a wide range of adaptability, and shows the structural forms and reaction formulas of more than dozens of benzene homologs and derivatives. Under the guidance of the new theory, the stacked three-dimensional structure of benzene was explored. The thickness of the three-layer benzene tube is calculated to be almost equal to the thickness of the graphene. Therefore, it is speculated that graphene may be a three layer structure.


2021 ◽  
Vol 7 (1) ◽  
pp. 47-58
Author(s):  
Roman Fedorov ◽  
Oleg Berngardt

The paper considers the implementation of algorithms for automatic search for signals scattered by meteor trails according to EKB ISTP SB RAS radar data. In general, the algorithm is similar to the algorithms adopted in specialized meteor systems. The algorithm is divided into two stages: detecting a meteor echo and determining its parameters. We show that on the day of the maximum Geminid shower, December 13, 2016, the scattered signals detected by the algorithm are foreshortening and correspond to scattering by irregularities extended in the direction of the meteor shower radiant. This confirms that the source of the signals detected by the algorithm is meteor trails. We implement an additional program for indirect trail height determination. It uses a decay time of echo and the NRLMSIS-00 atmosphere model to estimate the trail height. The dataset from 2017 to 2019 is used for further testing of the algorithm. We demonstrate a correlation in calculated Doppler velocity between the new algorithm and FitACF. We present a solution of the inverse problem of reconstructing the neutral wind velocity vector from the data obtained by the weighted least squares method. We compare calculated speeds and directions of horizontal neutral winds, obtained in the three-dimensional wind model, and the HWM-14 horizontal wind model. The algorithm allows real-time scattered signal processing and has been put into continuous operation at the EKB ISTP SB RAS radar.


Abstract The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) data set blends radar data from the WSR-88D network and Near-Storm Environmental (NSE) model analyses using the Multi-Radar Multi-Sensor (MRMS) framework. The MYRORSS data set uses the WSR-88D archive starting in 1998 through 2011, processing all valid single-radar volumes to produce a seamless three-dimensional reflectivity volume over the entire contiguous United States with an approximate 5-min update frequency. The three-dimensional grid has an approximate 1-km by 1-km horizontal dimension and is on a stretched vertical grid that extends to 20 km MSL with a maximal vertical spacing of 1 km. Several reflectivity-derived, severe storm related products are also produced, which leverage the ability to merge the MRMS and NSE data. Two Doppler velocity-derived azimuthal shear layer maximum products are produced at a higher horizontal resolution of approximately 0.5-km by 0.5-km. The initial period of record for the data set is 1998-2011. The data set underwent intensive manual quality control to ensure that all available and valid data were included while excluding highly problematic radar volumes that were a negligible percentage of the overall data set, but which caused large data errors in some cases. This data set has applications towards radar-based climatologies, post-event analysis, machine learning applications, model verification, and warning improvements. Details of the manual quality control process are included and examples of some of these applications are presented.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 716 ◽  
Author(s):  
Oliveira ◽  
Xue ◽  
Roberts ◽  
Wicker ◽  
Yussouf

Supercell thunderstorms can produce a wide spectrum of vortical structures, ranging from midlevel mesocyclones to small-scale suction vortices within tornadoes. A less documented class of vortices are horizontally-oriented vortex tubes near and/or wrapping about tornadoes, that are observed either visually or in high-resolution Doppler radar data. In this study, an idealized numerical simulation of a tornadic supercell at 100 m grid spacing is used to analyze the three-dimensional (3D) structure and kinematics of horizontal vortices (HVs) that interact with a simulated tornado. Visualizations based on direct volume rendering aided by visual observations of HVs in a real tornado reveal the existence of a complex distribution of 3D vortex tubes surrounding the tornadic flow throughout the simulation. A distinct class of HVs originates in two key regions at the surface: around the base of the tornado and in the rear-flank downdraft (RFD) outflow and are believed to have been generated via surface friction in regions of strong horizontal near-surface wind. HVs around the tornado are produced in the tornado outer circulation and rise abruptly in its periphery, assuming a variety of complex shapes, while HVs to the south-southeast of the tornado, within the RFD outflow, ascend gradually in the updraft.


2018 ◽  
Vol 181 ◽  
pp. 01025
Author(s):  
S. Kumano ◽  
Qin-Tao Song ◽  
O. V. Teryaev

Three-dimensional tomography of hadrons can be investigated by generalized parton distributions (GPDs), transverse-momentum-dependent parton distributions (TMDs), and generalized distribution amplitudes (GDAs). The GDA studies had been only theoretical for a long time because there was no experimental measurement until recently, whereas the GPDs and TMDs have been investigated extensively by deeply vir- tual Compton scattering and semi-inclusive deep inelastic scattering. Here, we report our studies to determine pion GDAs from recent KEKB measurements on the differen- tial cross section of γ*γ → π0π0. Since an exotic-hadron pair can be produced in the final state, the GDAs can be used also for probing internal structure of exotic hadron candidates in future. The other important feature of the GDAs is that the GDAs contain information on form factors of the energy-momentum tensor for quarks and gluons, so that gravitational form factors and radii can be calculated from the determined GDAs. We show the mass (energy) and the mechanical (pressure, shear force) form factors and radii for the pion. Our analysis should be the first attempt for obtaining gravitational form factors and radii of hadrons by analysis of actual experimental measurements. We believe that a new field of gravitational physics is created from the microscopic level in terms of elementary quarks and gluons.


2020 ◽  
Vol 37 (5) ◽  
pp. 741-758
Author(s):  
Valentin Louf ◽  
Alain Protat ◽  
Robert C. Jackson ◽  
Scott M. Collis ◽  
Jonathan Helmus

AbstractUnfold Radar Velocity (UNRAVEL) is an open-source modular Doppler velocity dealiasing algorithm for weather radars. UNRAVEL is an algorithm that does not need external reference velocity data, making it easily applicable. The proposed algorithm includes 11 core modules and 2 dealiasing strategies. UNRAVEL is an iterative algorithm. The goal is to build the dealiasing results starting with the strictest possible continuity tests in azimuth and range and, after each step, relaxing the parameters to include more results from a progressively growing number of reference points. UNRAVEL also has modules that perform 3D continuity checks. Thanks to this modular design, the number of dealiasing strategies can be expanded in order to optimize the dealiasing results. While the first driver dealiases Doppler velocity from each tilt independently from one another, the second driver also performs a three-dimensional continuity check of the velocity using successive elevations. The proposed dealiasing algorithm is tested using severe weather data from an S-band Doppler radar that have been aliased to mimic aliased radial velocity patterns that would be observed by a C-band Doppler radar. Artificially aliasing S-band data permits creation of a reference to which the performance of various dealiasing techniques can be compared. Comparisons show that UNRAVEL consistently outperforms other established dealiasing algorithms for the test period selected in this work.


2007 ◽  
Vol 135 (11) ◽  
pp. 3767-3784 ◽  
Author(s):  
Kimberly K. Comstock ◽  
Sandra E. Yuter ◽  
Robert Wood ◽  
Christopher S. Bretherton

Abstract Drizzling marine stratocumulus are examined using observations from the 2001 East Pacific Investigation of Climate Stratocumulus (EPIC Sc) field experiment. This study uses a unique combination of satellite and shipborne Doppler radar data including both horizontal and vertical cross sections through drizzle cells. Stratocumulus cloud structure was classified as closed cellular, open cellular, or unclassifiable using infrared satellite images. Distributions of drizzle cell structure, size, and intensity are similar among the cloud-structure categories, though the open-cellular distributions are shifted toward higher values. Stronger and larger drizzle cells preferentially occur when the cloud field is broken (open-cellular and unclassifiable categories). Satellite observations of cloud structure may be useful to indicate the most likely distribution of rain rates associated with a set of scenes, but infrared data alone are not sufficient to develop routine precipitation retrievals for marine stratocumulus. Individual drizzle cells about 2–20 km across usually showed precipitation growth within the cloud layer and evaporation below, divergence near echo top, and convergence below cloud base. Diverging flow near the surface was also observed beneath heavily precipitating drizzle cells. As the cloud field transitioned from a closed to an open-cellular cloud structure, shipborne radar revealed prolific development of small drizzle cells (<10 km2) that exceeded by over 5 times the number of total cells in either the preceding closed-cellular or following open-cellular periods. Peak area-average rain rates lagged by a few hours the peak in total number of drizzle cells. Based on observations from EPIC Sc, the highest stratocumulus rain rates are more likely to occur near the boundary between closed and open-cellular cloud structures.


Sign in / Sign up

Export Citation Format

Share Document