scholarly journals Estimating Tropical Cyclone Integrated Kinetic Energy with the CYGNSS Satellite Constellation

2017 ◽  
Vol 56 (1) ◽  
pp. 235-245 ◽  
Author(s):  
Mary Morris ◽  
Christopher S. Ruf

AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) constellation is designed to provide observations of surface wind speed in and near the inner core of tropical cyclones with high temporal resolution throughout the storm’s life cycle. A method is developed for estimating tropical cyclone integrated kinetic energy (IKE) using CYGNSS observations. IKE is calculated for each geographically based quadrant out to an estimate of the 34-kt (1 kt = 0.51 m s−1) wind radius. The CYGNSS-IKE estimator is tested and its performance is characterized using simulated CYGNSS observations with realistic measurement errors. CYGNSS-IKE performance improves for stronger, more organized storms and with increasing number of observations over the extent of the 34-kt radius. Known sampling information can be used for quality control. While CYGNSS-IKE is calculated for individual geographic quadrants, using a total-IKE—a sum over all quadrants—improves performance. CYGNSS-IKE should be of interest to operational and research meteorologists, insurance companies, and others interested in the destructive potential of tropical cyclones developing in data-sparse regions, which will now be covered by CYGNSS. The CYGNSS-IKE product will be available for the 2017 Atlantic Ocean hurricane season.

2017 ◽  
Vol 56 (7) ◽  
pp. 1847-1865 ◽  
Author(s):  
Mary Morris ◽  
Christopher S. Ruf

AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) consists of a constellation of eight microsatellites that provide observations of surface wind speed in all precipitating conditions. A method for estimating tropical cyclone (TC) metrics—maximum surface wind speed VMAX, radius of maximum surface wind speed RMAX, and wind radii (R64, R50, and R34)—from CYGNSS observations is developed and tested using simulated CYGNSS observations with realistic measurement errors. Using two inputs, 1) CYGNSS observations and 2) the storm center location, estimates of TC metrics are possible through the use of a parametric wind model algorithm that effectively interpolates between the available observations as a constraint on the assumed wind speed distribution. This methodology has a promising performance as evaluated from the simulations presented. In particular, after quality-control filters based on sampling properties are applied to the population of test cases, the standard deviation of retrieval error for VMAX is 4.3 m s−1 (where 1 m s−1 = 1.94 kt), for RMAX is 17.4 km, for R64 is 16.8 km, for R50 is 21.6 km, and for R34 is 41.3 km (where 1 km = 0.54 n mi). These TC data products will be available for the 2017 Atlantic Ocean hurricane season using on-orbit CYGNSS observations, but near-real-time operations are the subject of future work. Future work will also include calibration and validation of the algorithm once real CYGNSS data are available.


Author(s):  
David A. Schecter

Abstract A cloud resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30 to 26 °C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle tropospheric relative humidity and lower tropospheric CAPE inward of the radius of maximum surface wind speed rm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction of rm and the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle tropospheric relative humidity for SSTs of 28-30 °C are respectively higher and lower than their counterparts at 26 °C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.


2008 ◽  
Vol 136 (12) ◽  
pp. 4882-4898 ◽  
Author(s):  
Katherine S. Maclay ◽  
Mark DeMaria ◽  
Thomas H. Vonder Haar

Abstract Tropical cyclone (TC) destructive potential is highly dependent on the distribution of the surface wind field. To gain a better understanding of wind structure evolution, TC 0–200-km wind fields from aircraft reconnaissance flight-level data are used to calculate the low-level area-integrated kinetic energy (KE). The integrated KE depends on both the maximum winds and wind structure. To isolate the structure evolution, the average relationship between KE and intensity is first determined. Then the deviations of the KE from the mean intensity relationship are calculated. These KE deviations reveal cases of significant structural change and, for convenience, are referred to as measurements of storm size [storms with greater (less) KE for their given intensity are considered large (small)]. It is established that TCs generally either intensify and do not grow or they weaken/maintain intensity and grow. Statistical testing is used to identify conditions that are significantly different for growing versus nongrowing storms in each intensification regime. Results suggest two primary types of growth processes: (i) secondary eyewall formation and eyewall replacement cycles, an internally dominated process, and (ii) external forcing from the synoptic environment. One of the most significant environmental forcings is the vertical shear. Under light shear, TCs intensify but do not grow; under moderate shear, they intensify less but grow more; under very high shear, they do not intensify or grow. As a supplement to this study, a new TC classification system based on KE and intensity is presented as a complement to the Saffir–Simpson hurricane scale.


2007 ◽  
Vol 88 (4) ◽  
pp. 513-526 ◽  
Author(s):  
Mark D. Powell ◽  
Timothy A. Reinhold

Tropical cyclone damage potential, as currently defined by the Saffir-Simpson scale and the maximum sustained surface wind speed in the storm, fails to consider the area impact of winds likely to force surge and waves or cause particular levels of damage. Integrated kinetic energy represents a framework that captures the physical process of ocean surface stress forcing waves and surge while also taking into account structural wind loading and the spatial coverage of the wind. Integrated kinetic energy was computed from gridded, objectively analyzed surface wind fields of 23 hurricanes representing large and small storms. A wind destructive potential rating was constructed by weighting wind speed threshold contributions to the integrated kinetic energy, based on observed damage in Hurricanes Andrew, Hugo, and Opal. A combined storm surge and wave destructive potential rating was assigned according to the integrated kinetic energy contributed by winds greater than tropical storm force. The ratings are based on the familiar 1–5 range, with continuous fits to allow for storms as weak as 0.1 or as strong as 5.99.


2019 ◽  
Vol 100 (10) ◽  
pp. 2009-2023 ◽  
Author(s):  
Christopher Ruf ◽  
Shakeel Asharaf ◽  
Rajeswari Balasubramaniam ◽  
Scott Gleason ◽  
Timothy Lang ◽  
...  

AbstractThe NASA Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites was successfully launched into low Earth orbit on 15 December 2016. Each satellite carries a radar receiver that measures GPS signals scattered from the surface. Wind speed over the ocean is determined from distortions in the signal caused by wind-driven surface roughness. GPS operates at a sufficiently low frequency to allow for propagation through all precipitation, including the extreme rain rates present in the eyewall of tropical cyclones. The spacing and orbit of the satellites were chosen to optimize frequent sampling of tropical cyclones. In this study, we characterize the CYGNSS ocean surface wind speed measurements by their uncertainty, dynamic range, sensitivity to precipitation, spatial resolution, spatial and temporal sampling, and data latency. The current status of each of these properties is examined and potential future improvements are discussed. In addition, examples are given of current science investigations that make use of the data.


2014 ◽  
Vol 29 (3) ◽  
pp. 582-590 ◽  
Author(s):  
Cristina Alexandra Carrasco ◽  
Christopher William Landsea ◽  
Yuh-Lang Lin

Abstract This study investigates tropical cyclones of the past two decades (1990–2010) and the connection, if any, between their size and their ability to subsequently undergo rapid intensification (RI). Three different parameters are chosen to define the size of a tropical cyclone: radius of maximum wind (RMW), the average 34-knot (kt; 1 kt = 0.51 m s−1) radius (AR34), and the radius of the outermost closed isobar (ROCI). The data for this study, coming from the North Atlantic hurricane database second generation (HURDAT2), as well as the extended best-track dataset, are organized into 24-h intervals of either RI or slow intensification/constant intensity periods (non-RI periods). Each interval includes the intensity (maximum sustained surface wind speed), RMW, AR34, and ROCI at the beginning of the period and the change of intensity during the subsequent 24-h period. Results indicate that the ability to undergo RI shows significant sensitivity to initial size. Comparisons between RI and non-RI cyclones confirm that tropical cyclones that undergo RI are more likely to be smaller initially than those that do not. Analyses show that the RMW and AR34 have the strongest negative correlation with the change of intensity. Scatterplots imply there is a general maximum size threshold for RMW and AR34, above which RI is extremely rare. In contrast, the overall size of the tropical cyclones, as measured by ROCI, appears to have little to no relationship with subsequent intensification. The results of this work suggest that intensity forecasts and RI predictions in particular may be aided by the use of the initial size as measured by RMW and AR34.


2018 ◽  
Vol 75 (11) ◽  
pp. 3777-3795 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract Spiral bands are ubiquitous features in tropical cyclones and significantly affect boundary layer thermodynamics, yet knowledge of their boundary layer dynamics is lacking. Prompted by recent work that has shown that relatively weak axisymmetric vorticity perturbations outside of the radius of maximum winds in tropical cyclones can produce remarkably strong frictional convergence, and by the observation that most secondary eyewalls appear to form by the “wrapping up” of a spiral rainband, the effect of asymmetric vorticity features that mimic spiral bands is studied. The mass field corresponding to an axisymmetric vortex with added spiral vorticity band is constructed using the nonlinear balance equation, and supplied to a three-dimensional boundary layer model. The resulting flow has strong low-level convergence and a marked updraft extending along the vorticity band and some distance downwind. There is a marked along-band wind maximum in the upper boundary layer, similar to observations, which is up to about 20% stronger than the balanced flow. A marked gradient in the inflow-layer depth exists across the band and there is an increase in the surface wind factor (the ratio of surface wind speed to nonlinear-balanced wind speed) near the band. The boundary layer dynamics near a rainband therefore form a continuum with the flow near a secondary eyewall. None of these features are due to convective momentum transports, which are absent from the model. The sensitivities of the flow to band length, width, location, crossing angle, and amplitude are examined, and the possible contribution of boundary layer dynamics to the formation of the tropical cyclone rainbands discussed.


2014 ◽  
Vol 142 (12) ◽  
pp. 4646-4657 ◽  
Author(s):  
Michael E. Kozar ◽  
Vasubandhu Misra

Abstract Integrated kinetic energy (IKE) is a useful quantity that measures the size and strength of a tropical cyclone wind field. As a result, it is inherently related to the destructive potential of these powerful storms. In most current operational settings, there are limited resources designed to assess the IKE of a tropical cyclone because storm track and maximum intensity are typically prioritized. Therefore, to complement existing forecasting tools, a statistical scheme is created to project fluctuations of IKE in North Atlantic tropical cyclones for several forecast intervals out to 72 h. The resulting scheme, named Statistical Prediction of Integrated Kinetic Energy (SPIKE), utilizes multivariate normal regression models trained on environmental and storm-related predictors from all North Atlantic tropical cyclones occurring from 1990 to 2011. During this training interval, SPIKE outperforms persistence and is capable of explaining more than 80% of observed variance in total IKE values at a forecast interval of 12 h, trailing down to just below 60% explained variance at an interval of 72 h. The skill of the SPIKE model is evaluated further using bootstrapping exercises in order to gauge the predictive abilities of the statistical scheme. In addition, the performance of the SPIKE model is also evaluated for the 2012 Atlantic hurricane season, which notably falls outside of the training interval. Ultimately, the validation exercises return shared variance scores similar to those found in the training exercises, serving as a proof of concept that the SPIKE model can be used to project IKE values when given accurate predictor data.


2021 ◽  
Vol 60 (4) ◽  
pp. 527-541
Author(s):  
Juan A. Crespo ◽  
Catherine M. Naud ◽  
Derek J. Posselt

AbstractLatent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.


2019 ◽  
Vol 34 (4) ◽  
pp. 905-922 ◽  
Author(s):  
Timothy L. Olander ◽  
Christopher S. Velden

Abstract The advanced Dvorak technique (ADT) is used operationally by tropical cyclone forecast centers worldwide to help estimate the intensity of tropical cyclones (TCs) from operational geostationary meteorological satellites. New enhancements to the objective ADT have been implemented by the algorithm development team to further expand its capabilities and precision. The advancements include the following: 1) finer tuning to aircraft-based TC intensity estimates in an expanded development sample, 2) the incorporation of satellite-based microwave information into the intensity estimation scheme, 3) more sophisticated automated TC center-fixing routines, 4) adjustments to the intensity estimates for subtropical systems and TCs undergoing extratropical transition, and 5) addition of a surface wind radii estimation routine. The goals of these upgrades and others are to provide TC analysts/forecasters with an expanded objective guidance tool to more accurately estimate the intensity of TCs and those storms forming from, or converting into, hybrid/nontropical systems. The 2018 TC season is used to illustrate the performance characteristics of the upgraded ADT.


Sign in / Sign up

Export Citation Format

Share Document