scholarly journals An Analysis of Regional Climate Simulations for Western Australia’s Wine Regions—Model Evaluation and Future Climate Projections

2017 ◽  
Vol 56 (7) ◽  
pp. 2113-2138 ◽  
Author(s):  
Rebecca Firth ◽  
Jatin Kala ◽  
Thomas J. Lyons ◽  
Julia Andrys

AbstractThe Weather Research and Forecasting (WRF) Model is evaluated as a regional climate model for the simulation of climate indices that are relevant to viticulture in Western Australia’s wine regions at a 5-km resolution under current and future climate. WRF is driven with ERA-Interim reanalysis for the current climate and three global climate models (GCMs) for both current and future climate. The focus of the analysis is on a selection of climate indices that are commonly used in climate–viticulture research. Simulations of current climate are evaluated against an observational dataset to quantify model errors over the 1981–2010 period. Changes to the indices under future climate based on the SRES A2 emissions scenario are then assessed through an analysis of future (2030–59) minus present (1970–99) climate. Results show that when WRF is driven with ERA-Interim there is generally good agreement with observations for all of the indices although there is a noticeable negative bias for the simulation of precipitation. The results for the GCM-forced simulations were less consistent. Namely, while the GCM-forced simulations performed reasonably well for the temperature indices, all simulations performed inconsistently for the precipitation index. Climate projections showed significant warming for both of the temperature indices and indicated potential risks to Western Australia’s wine growing regions under future climate, particularly in the north. There was disagreement between simulations with regard to the projections of the precipitation indices and hence greater uncertainty as to how these will be characterized under future climate.

2016 ◽  
Vol 11 (2) ◽  
pp. 670-678 ◽  
Author(s):  
N. S Vithlani ◽  
H. D Rank

For the future projections Global climate models (GCMs) enable development of climate projections and relate greenhouse gas forcing to future potential climate states. When focusing it on smaller scales it exhibit some limitations to overcome this problem, regional climate models (RCMs) and other downscaling methods have been developed. To ensure statistics of the downscaled output matched the corresponding statistics of the observed data, bias correction was used. Quantify future changes of climate extremes were analyzed, based on these downscaled data from two RCMs grid points. Subset of indices and models, results of bias corrected model output and raw for the present day climate were compared with observation, which demonstrated that bias correction is important for RCM outputs. Bias correction directed agreements of extreme climate indices for future climate it does not correct for lag inverse autocorrelation and fraction of wet and dry days. But, it was observed that adjusting both the biases in the mean and variability, relatively simple non-linear correction, leads to better reproduction of observed extreme daily and multi-daily precipitation amounts. Due to climate change temperature and precipitation will increased day by day.


2021 ◽  
Author(s):  
Guillaume Evin ◽  
Samuel Somot ◽  
Benoit Hingray

Abstract. Large Multiscenarios Multimodel Ensembles (MMEs) of regional climate model (RCM) experiments driven by Global Climate Models (GCM) are made available worldwide and aim at providing robust estimates of climate changes and associated uncertainties. Due to many missing combinations of emission scenarios and climate models leading to sparse Scenario-GCM-RCM matrices, these large ensembles are however very unbalanced, which makes uncertainty analyses impossible with standard approaches. In this paper, the uncertainty assessment is carried out by applying an advanced statistical approach, called QUALYPSO, to a very large ensemble of 87 EURO-CORDEX climate projections, the largest ensemble ever produced for regional projections in Europe. This analysis provides i) the most up-to-date and balanced estimates of mean changes for near-surface temperature and precipitation in Europe, ii) the total uncertainty of projections and its partition as a function of time, and iii) the list of the most important contributors to the model uncertainty. For changes of total precipitation and mean temperature in winter (DJF) and summer (JJA), the uncertainty due to RCMs can be as large as the uncertainty due to GCMs at the end of the century (2071–2099). Both uncertainty sources are mainly due to a small number of individual models clearly identified. Due to the highly unbalanced character of the MME, mean estimated changes can drastically differ from standard average estimates based on the raw ensemble of opportunity. For the RCP4.5 emission scenario in Central-Eastern Europe for instance, the difference between balanced and direct estimates are up to 0.8 °C for summer temperature changes and up to 20 % for summer precipitation changes at the end of the century.


2021 ◽  
Author(s):  
Csaba Zsolt Torma

<p>The answers to the following questions ‘What are the consequences of climate change (warming)…?’ and ‘By when do we have to be prepared for that level of climate change (warming)?’ must be given only with caution. On the one hand, regional or local changes can be inconsistent with global changes, as local processes might not accurately interpreted by global climate models (GCMs) due to their relative coarse resolution. On the other hand, climate model simulations’ outputs are prone to biases compared to observations; furthermore, climate projections can be very different in modelling future temperature characteristics. In this context, while the magnitude of expected change described by a climate model may seem to be reasonable, but the projected temperature is not necessarily realistic (considering the model’s relative bias compared to observations). More specifically, the standard procedure of assessing climate change can be illustrated by taking the mean for a future period (e.g. 2070–2099) and compute the change relative to a reference period (e.g. 1976−2005). Keeping in mind the expected changes based on those projections might come with high degree of uncertainty as simulations might show different mean temperature values for the same assessed periods with even a range of few degrees of °C. When regional climate change is assessed based on at a given regional warming level (WL, e.g. 1.5 °C) added to the observed mean, then the aforementioned uncertainty range is reduced as the models (GCM or regional climate models) are assessed with respect to the same 30-year mean temperature value, but not for the same periods (noting that the WL is defined at regional and not at global scale). Thus the uncertainty of expected changes with regard to temperature can be significantly reduced. In this case an additional uncertainty factor might rise: time, as climate models can reach that WL at different times. Accordingly, we can give information on relative changes with a specific uncertainty as a metric based on the timing of reaching the assessed WL. Aim of the present work is to illustrate the feasibility of this concept for the region of the Carpathian Basin based on high-resolution EURO- and Med-CORDEX simulations.</p>


2021 ◽  
Vol 12 (4) ◽  
pp. 1543-1569
Author(s):  
Guillaume Evin ◽  
Samuel Somot ◽  
Benoit Hingray

Abstract. Large multiscenario multimodel ensembles (MMEs) of regional climate model (RCM) experiments driven by global climate models (GCMs) are made available worldwide and aim at providing robust estimates of climate changes and associated uncertainties. Due to many missing combinations of emission scenarios and climate models leading to sparse scenario–GCM–RCM matrices, these large ensembles, however, are very unbalanced, which makes uncertainty analyses impossible with standard approaches. In this paper, the uncertainty assessment is carried out by applying an advanced statistical approach, called QUALYPSO, to a very large ensemble of 87 EURO-CORDEX climate projections, the largest MME based on regional climate models ever produced in Europe. This analysis provides a detailed description of this MME, including (i) balanced estimates of mean changes for near-surface temperature and precipitation in Europe, (ii) the total uncertainty of projections and its partition as a function of time, and (iii) the list of the most important contributors to the model uncertainty. For changes in total precipitation and mean temperature in winter (DJF) and summer (JJA), the uncertainty due to RCMs can be as large as the uncertainty due to GCMs at the end of the century (2071–2099). Both uncertainty sources are mainly due to a small number of individual models clearly identified. Due to the highly unbalanced character of the MME, mean estimated changes can drastically differ from standard average estimates based on the raw ensemble of opportunity. For the RCP4.5 emission scenario in central–eastern Europe for instance, the difference between balanced and direct estimates is up to 0.8 ∘C for summer temperature changes and up to 20 % for summer precipitation changes at the end of the century.


2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Zhongwei Yan ◽  
Jun Wang

Abstract Central Asia (CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need to achieve robust projection of regional climate change. In this study, we applied three bias-corrected global climate models (GCMs) to conduct 9km-resolution regional climate simulations in CA for the present (1986–2005) and future (2031–2050) periods. Dynamical downscaling based on multiple bias-corrected GCM outputs obtains numerous added values not only in reproducing the historical climate but also in projecting the climate changes in CA, in comparison to the original GCMs. The regional climate model (RCM) simulations indicate significant warming over CA in the near-term future, with the regional mean increase of annual daily mean temperature (Tmean) in a range of 1.63–2.01℃, relative to the present period. This increase is expected to be higher north of ~ 45°N in each season except summer and the high-elevation areas have a weaker warming signal than the plains through the year. The season with the largest warming rate is not consistent among the RCM simulations, highlighting the necessity of using multiple GCMs as the boundary conditions to give a range of the projected climate changes. A slight increase in annual precipitation is consistently projected in most plain areas, although the changes over few areas are statistically significant. The climate projections presented here serve as a robust scientific basis for assessment of future risk from climate change in CA.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Seshagiri Rao Kolusu ◽  
Christian Siderius ◽  
Martin C. Todd ◽  
Ajay Bhave ◽  
Declan Conway ◽  
...  

AbstractUncertainty in long-term projections of future climate can be substantial and presents a major challenge to climate change adaptation planning. This is especially so for projections of future precipitation in most tropical regions, at the spatial scale of many adaptation decisions in water-related sectors. Attempts have been made to constrain the uncertainty in climate projections, based on the recognised premise that not all of the climate models openly available perform equally well. However, there is no agreed ‘good practice’ on how to weight climate models. Nor is it clear to what extent model weighting can constrain uncertainty in decision-relevant climate quantities. We address this challenge, for climate projection information relevant to ‘high stakes’ investment decisions across the ‘water-energy-food’ sectors, using two case-study river basins in Tanzania and Malawi. We compare future climate risk profiles of simple decision-relevant indicators for water-related sectors, derived using hydrological and water resources models, which are driven by an ensemble of future climate model projections. In generating these ensembles, we implement a range of climate model weighting approaches, based on context-relevant climate model performance metrics and assessment. Our case-specific results show the various model weighting approaches have limited systematic effect on the spread of risk profiles. Sensitivity to climate model weighting is lower than overall uncertainty and is considerably less than the uncertainty resulting from bias correction methodologies. However, some of the more subtle effects on sectoral risk profiles from the more ‘aggressive’ model weighting approaches could be important to investment decisions depending on the decision context. For application, model weighting is justified in principle, but a credible approach should be very carefully designed and rooted in robust understanding of relevant physical processes to formulate appropriate metrics.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2015 ◽  
Vol 19 (12) ◽  
pp. 4783-4810 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960–2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990–2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.


2017 ◽  
Vol 56 (10) ◽  
pp. 2767-2787 ◽  
Author(s):  
Hussein Wazneh ◽  
M. Altaf Arain ◽  
Paulin Coulibaly

AbstractSpatial and temporal trends in historical temperature and precipitation extreme events were evaluated for southern Ontario, Canada. A number of climate indices were computed using observed and regional and global climate datasets for the area of study over the 1951–2013 period. A decrease in the frequency of cold temperature extremes and an increase in the frequency of warm temperature extremes was observed in the region. Overall, the numbers of extremely cold days decreased and hot nights increased. Nighttime warming was greater than daytime warming. The annual total precipitation and the frequency of extreme precipitation also increased. Spatially, for the precipitation indices, no significant trends were observed for annual total precipitation and extremely wet days in the southwest and the central part of Ontario. For temperature indices, cool days and warm night have significant trends in more than 90% of the study area. In general, the spatial variability of precipitation indices is much higher than that of temperature indices. In terms of comparisons between observed and simulated data, results showed large differences for both temperature and precipitation indices. For this region, the regional climate model was able to reproduce historical observed trends in climate indices very well as compared with global climate models. The statistical bias-correction method generally improved the ability of the global climate models to accurately simulate observed trends in climate indices.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


Sign in / Sign up

Export Citation Format

Share Document