scholarly journals Inversion Climatology in High-Production Agricultural Regions of Missouri and Implications for Pesticide Applications

2019 ◽  
Vol 58 (9) ◽  
pp. 1973-1992 ◽  
Author(s):  
Mandy D. Bish ◽  
Patrick E. Guinan ◽  
Kevin W. Bradley

ABSTRACTMost pesticides applied in the United States have labels that include language prohibiting application during temperature inversions. This restriction, which is well known and is followed by aerial pesticide applicators, has more recently become a focus for ground pesticide applicators. This is partially due to the recent introduction of genetically engineered soybean and cotton with tolerance to dicamba herbicide. Dicamba has been utilized for more than 50 years to control weeds in grain crops, such as corn. In 2017, dicamba was approved for use in dicamba-tolerant soybean and cotton. In 2017 and 2018, dicamba movement onto nontarget plants was substantial. As based on patterns of injury to nontolerant crops and time of applications, some of which occurred during the evening, inversions were likely contributors to off-target movement. Historically, most research on surface temperature inversions and pesticides focused on aerial applications. Research presented here focused on development of inversion profiles at atmospheric heights relevant to ground applications, which typically occur 46–107 cm above ground level (AGL). During the 2015–17 soybean growing seasons, data were collected at three heights AGL (46, 168, and 305 cm) in three soybean-producing regions of Missouri to characterize inversions. Over 600 inversions were characterized; all were nocturnal in nature. Inversions typically lasted overnight at two locations; duration varied at the third. The largest temperature difference recorded was 6°C. This research has resulted in real-time inversion monitoring that is available online to applicators (http://agebb.missouri.edu/weather/realTime/maps/index.php#temp_inversion), and the data generated can be utilized to improve accuracy of low-level inversion forecasting models.

2017 ◽  
Vol 31 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Mandy D. Bish ◽  
Kevin W. Bradley

The introduction of soybean and cotton traits with resistance to synthetic auxin herbicides has led to an increase in concern over the off-target movement of dicamba and 2,4-D. A direct-mail survey was sent to Missouri pesticide applicators in January of 2016 to understand current herbicide application practices and applicator knowledge and awareness of the new synthetic auxin technologies. Completed surveys were returned by 2,335 applicators, representing approximately 11% of the state’s registered pesticide applicators. Survey data reported herein provides information regarding current pesticide applicator knowledge and practices and highlights areas that need more emphasis during applicator training. Overall, survey respondents were familiar with physical drift and methods to minimize that risk. However respondents were less familiar with volatility and temperature inversions, which can each influence off-target herbicide movement. Of the 427 commercial applicators and 1,535 noncommercial applicators who answered questions regarding volatility, 81% and 74% respectively, recognized that high temperatures can contribute to a herbicide’s ability to volatilize. However, only 48% and 39% understood that a herbicide’s vapor pressure influences volatility. Answers from the survey indicate further education is needed on the synthetic auxin technologies, such as what herbicides can be used with each technology, proper methods for inspecting and cleaning spray equipment, and the importance of reading herbicide labels. When asked whether applicators were aware of the new 2,4-D-resistant and dicamba-resistant traits, 76% of 443 commercial applicators and only 40% of 1,713 noncommercial applicators selected “yes.” Additionally, survey results suggests that current methods aimed to facilitate communication among producers and applicators, such as FieldWatch and Flag the Technology, may not be successfully adopted, at least in Missouri. Findings from this survey can be utilized to enhance training of pesticide applicators in preparation for the synthetic auxin herbicide technologies.


2018 ◽  
Vol 32 (6) ◽  
pp. 754-761 ◽  
Author(s):  
Rodrigo Werle ◽  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Christopher A. Proctor ◽  
Jennifer Rees ◽  
...  

AbstractIn 2017, dicamba-resistant (DR) soybean was commercially available to farmers in the United States. In August and September of 2017, a survey of 312 farmers from 60 Nebraska soybean-producing counties was conducted during extension field days or online. The objective of this survey was to understand farmers’ adoption and perceptions regarding DR soybean technology in Nebraska. The survey contained 16 questions and was divided in three parts: (1) demographics, (2) dicamba application in DR soybean, and (3) dicamba off-target injury to sensitive soybean cultivars. According to the results, 20% of soybean hectares represented by the survey were planted to DR soybean in 2017, and this number would probably double in 2018. Sixty-five percent of survey respondents own a sprayer and apply their own herbicide programs. More than 90% of respondents who adopted DR soybean technology reported significant improvement in weed control. Nearly 60% of respondents used dicamba alone or glyphosate plus dicamba for POST weed control in DR soybean; the remaining 40% added an additional herbicide with an alternative site of action (SOA) to the POST application. All survey respondents used one of the approved dicamba formulations for application in DR soybean. Survey results indicated that late POST dicamba applications (after late June) were more likely to result in injury to non-DR soybean compared to early POST applications (e.g., May and early June) in 2017. According to respondents, off-target dicamba movement resulted both from applications in DR soybean and dicamba-based herbicides applied in corn. Although 51% of respondents noted dicamba injury on non-DR soybean, 7% of those who noted injury filed an official complaint with the Nebraska Department of Agriculture. Although DR soybean technology allowed farmers to achieve better weed control during 2017 than previous growing seasons, it is apparent that off-target movement and resistance management must be addressed to maintain the viability and effectiveness of the technology in the future.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Rachel L. Washburn ◽  
Karl Mueller ◽  
Gurvinder Kaur ◽  
Tanir Moreno ◽  
Naima Moustaid-Moussa ◽  
...  

Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.


Author(s):  
Borut Jereb ◽  
Brigita Gajšek ◽  
Gregor Šipek ◽  
Špela Kovše ◽  
Matevz Obrecht

Black carbon is one of the riskiest particle matter pollutants that is harmful to human health. Although it has been increasingly investigated, factors that depend on black carbon distribution and concentration are still insufficiently researched. Variables, such as traffic density, wind speeds, and ground levels can lead to substantial variations of black carbon concentrations and potential exposure, which is even riskier for people living in less-airy sites. Therefore, this paper “fills the gaps” by studying black carbon distribution variations, concentrations, and oscillations, with special emphasis on traffic density and road segments, at multiple locations, in a small city located in a basin, with frequent temperature inversions and infrequent low wind speeds. As wind speed has a significant impact on black carbon concentration trends, it is critical to present how low wind speeds influence black carbon dispersion in a basin city, and how black carbon is dependent on traffic density. Our results revealed that when the wind reached speeds of 1 ms−1, black carbon concentrations actually increased. In lengthy wind periods, when wind speeds reached 2 or 3 ms−1, black carbon concentrations decreased during rush hour and in the time of severe winter biomass burning. By observing the results, it could be concluded that black carbon persists longer in higher altitudes than near ground level. Black carbon concentration oscillations were also seen as more pronounced on main roads with higher traffic density. The more the traffic decreases and becomes steady, the more black carbon concentrations oscillate.


2013 ◽  
Vol 10 (2) ◽  
pp. 160-169 ◽  
Author(s):  
Marcus A. Badgeley ◽  
Natalie M. McIlvain ◽  
Ellen E. Yard ◽  
Sarah K. Fields ◽  
R. Dawn Comstock

Background:With more than 1.1 million high school athletes playing annually during the 2005−06 to 2009−10 academic years, football is the most popular boys’ sport in the United States.Methods:Using an internet-based data collection tool, RIO, certified athletic trainers (ATs) from 100 nationally representative US high schools reported athletic exposure and football injury data during the 2005−06 to 2009−10 academic years.Results:Participating ATs reported 10,100 football injuries corresponding to an estimated 2,739,187 football-related injuries nationally. The injury rate was 4.08 per 1000 athlete-exposures (AEs) overall. Offensive lineman collectively (center, offensive guard, offensive tackle) sustained 18.3% of all injuries. Running backs (16.3%) sustained more injuries than any other position followed by linebackers (14.9%) and wide receivers (11.9%). The leading mechanism of injury was player-player contact (64.0%) followed by player-surface contact (13.4%). More specifically, injury occurred most commonly when players were being tackled (24.4%) and tackling (21.8%).Conclusions:Patterns of football injuries vary by position. Identifying such differences is important to drive development of evidence-based, targeted injury prevention efforts.


2018 ◽  
Vol 33 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Debalin Sarangi ◽  
Amit J. Jhala

AbstractDue to depressed corn and soybean prices over the last few years in the United States, growers in Nebraska are showing interest in no-tillage (hereafter referred to as no-till) conventional (non–genetically engineered [non-GE]) soybean production. Due to the increasing number of herbicide-resistant weeds in the United States, weed control in no-till non-GE soybean using POST herbicides is a challenge. The objectives of this study were to compare PRE-only, PRE followed by (fb) POST, and PRE fb POST with residual (POST-WR) herbicide programs for Palmer amaranth and velvetleaf control and soybean injury and yield, as well as to estimate the gross profit margins and benefit–cost ratio of herbicide programs. A field experiment was conducted in 2016 and 2017 at Clay Center, NE. The PRE herbicides tested in this study resulted in ≥95% Palmer amaranth and velvetleaf control at 28 d after PRE (DAPRE). Averaged across the programs, the PRE-only program controlled Palmer amaranth 66%, whereas 86% and 97% control was obtained with the PRE fb POST and PRE fb POST-WR programs, respectively, at 28 d after POST (DAPOST). At 28 DAPOST, the PRE fb POST herbicide programs controlled velvetleaf 94%, whereas the PRE-only program resulted in 85% control. Mixing soil-residual herbicides with foliar-active POST programs did not improve velvetleaf control. Averaged across herbicide programs, PRE fb POST programs increased soybean yield by 10% and 41% in 2016 and 2017, respectively, over the PRE-only programs. Moreover, PRE fb POST-WR programs produced 7% and 40% higher soybean yield in 2016 and 2017, respectively, compared with the PRE fb POST programs. The gross profit margin (US$1,184.3 ha−1) was highest under flumioxazin/pyroxasulfone (PRE) fb fluthiacet-methyl plusS-metolachlor/fomesafen (POST-WR) treatment; however, the benefit–cost ratio was highest (6.1) with the PRE-only program of flumioxazin/chlorimuron-ethyl.


2021 ◽  
Author(s):  
Eleftherios Ioannidis ◽  
Kathy S. Law ◽  
Jean-Christophe Raut ◽  
Tatsuo Onishi ◽  
Louis Marelle ◽  
...  

<p>The wintertime Arctic is influenced by air pollution transported from mid-latitudes, leading to formation of Arctic Haze, as well as local emissions such as combustion for heating and power production in very cold winter conditions. This contributes to severe air pollution episodes, with enhanced aerosol concentrations, inter-dispersed with cleaner periods. However, the formation of secondary aerosol particles (sulphate, organics, nitrate) in cold/dark wintertime Arctic conditions, which could contribute to these pollution episodes, is poorly understood.</p><p>In this study, which contributes to the Air Pollution in the Arctic: Climate, Environment and Societies - Alaskan Layered Pollution and Arctic Chemical Analysis (PACES-ALPACA) initiative, the Weather Research Forecasting Model with chemistry (WRF-Chem) is used to investigate wintertime pollution over central Alaska focusing on the Fairbanks region, during the pre-ALPACA campaign in winter 2019-2020. Fairbanks is the most polluted city in the United States during wintertime, due to high local emissions and the occurrence of strong surface temperature inversions trapping pollutants near the surface.</p><p>Firstly, different WRF meteorological and surface schemes were tested over Alaska with a particular focus on improving simulations of the wintertime boundary layer structure including temperature inversions. An optimal WRF set-up, with increased vertical resolution below 2km, was selected based on evaluation against available data.</p><p>Secondly, a quasi-hemispheric WRF-Chem simulation, using the improved WRF setup, was used to assess large-scale synoptic conditions and to evaluate background aerosols originating from remote anthropogenic and natural sources affecting central Alaska during the campaign. The model was run with Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE) v6b anthropogenic emissions and improved sea-spray aerosol emissions. Discrepancies in modelled aerosols compared available data are being investigated (e.g. missing dark formation mechanisms, treatment of removal processes).</p><p>Thirdly, fine resolution simulations, using high resolution emissions (e.g. 2019 CAMS inventory), including local point sources, over the Fairbanks region, were used to investigate chemical and dynamical processes influencing aerosols under different meteorological conditions observed during the field campaign including a cold stable episode and a period with possible mixing of air masses from aloft. The model was evaluated against available aerosol, oxidant (ozone) and aerosol precursor data from surface monitoring sites and collected during the pre-campaign, including vertical profile data collected in the lowest 20m. The sensitivity of modelled aerosols to meteorological factors, such as relative humidity, temperature gradients and vertical mixing under winter conditions are investigated.</p>


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1681-1686 ◽  
Author(s):  
Daren S. Mueller ◽  
Adam J. Sisson ◽  
Rachel Kempker ◽  
Scott Isard ◽  
Conner Raymond ◽  
...  

The social media platform Twitter was used to monitor corn and soybean diseases in the United States during 2016 and 2017 as part of a campaign to involve crop scouts, farmers, educators, and agricultural advisors in disease data sharing. The purpose was to explore the feasibility of providing farmers and crop consultants with an easily accessible, user-friendly, no-cost platform for sharing disease observations with rapid information transfer and early warning capabilities. Two Twitter accounts were created, @soydisease and @corndisease, as part of an accessible data collection method for later input into the Integrated Pest Information Platform for Extension and Education (iPiPE). Multiple methods were employed to create awareness and recruit users, which included writing articles for extension and popular farm news outlets and directly contacting potential agribusiness and extension stakeholders. From the creation of the accounts in February 2016 through September 2017, there were 738 followers and 8,668 profile visits for @soydisease; and 1,149 followers and 17,294 profile visits for @corndisease, with a variety of contributors including university extension, industry agronomists and service providers, students, a commodity group, and agricultural news. During the 2016 and 2017 growing seasons, use of the Twitter disease-monitoring campaign successfully helped track the movement of southern rust (caused by Puccinia polysora) of corn northward, allowing for advanced notice for scouting efforts. Although this is only an initial attempt, it shows that representatives from across a wide variety of agricultural sectors can contribute to a plant disease monitoring system using a common social media engine.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 334 ◽  
Author(s):  
Qiang Yu ◽  
Krishna Shah ◽  
Dong Wang ◽  
Yanbao Ma ◽  
Zhifeng Wang

California has some of the key agricultural regions in the United States. One of these key regions, San Joaquin Valley, frequently experiences severe droughts leading to shortage of irrigation water. This has a significant impact on the agricultural based economy of the region. It is imperative to develop new strategies to reduce overall water consumption in agriculture without affecting crop yield. A large fraction of irrigation water is lost due to the evapotranspiration (ET) process in the crops and the soil. The classical Penman-Monteith model has been used in the present work to analyze the effect of different environmental variables and water saving strategies on the ET. Some of the scenarios considered show potential for significant water savings without much reduction in the amount of sunlight available to facilitate crop growth. The central idea considered in this study is the use of canopy shading to cover the crop field resulting in reduction in the ET. Among the strategies considered, the most promising strategy is to partially cover the crop field for a certain part of the day by employing a partially covering retractable canopy. Based on numerical calculations, total reduction in ET is calculated to be 37% from June to August for the partially covering retractable canopy.


BioScience ◽  
2019 ◽  
Vol 69 (9) ◽  
pp. 746-756 ◽  
Author(s):  
Allison A Snow

Abstract Genetic engineering of wild populations has been proposed for reducing human diseases by altering pathogens’ hosts. For example, CRISPR-based genome editing may be used to create white-footed mice (Peromyscus leucopus) that are resistant to the Lyme disease spirochete vectored by blacklegged ticks (Ixodes scapularis). Toward this goal, academic researchers are developing Lyme-resistant and tick-resistant white-footed mice, which are a primary pathogen reservoir for Lyme disease in the United States. If field trials on small, experimental islands are successful, the project would scale up to the larger islands of Nantucket and Martha's Vineyard, Massachusetts, and possibly to the mainland, most likely with a local gene drive to speed the traits’ proliferation, pending approvals from relevant constituents. Despite considerable publicity, this project has yet to be evaluated by independent professional ecologists. In the present article, I discuss key ecological and evolutionary questions that should be considered before such genetically engineered mice are released into natural habitats.


Sign in / Sign up

Export Citation Format

Share Document