Complex Meteorology over a Complex Mining Facility: Assessment of Topography, Land Use, and Grid Spacing Modifications in WRF

2020 ◽  
Vol 59 (4) ◽  
pp. 769-789 ◽  
Author(s):  
Md. Rafsan Nahian ◽  
Amir Nazem ◽  
Manoj K. Nambiar ◽  
Ryan Byerlay ◽  
Shohel Mahmud ◽  
...  

AbstractThe performance of the Weather Research and Forecasting (WRF) Model is evaluated in predicting the meteorological conditions over a complex open-pit mining facility in northern Canada in support of more accurate operational reporting of area-fugitive greenhouse gas emission fluxes from such facilities. WRF is studied in a series of sensitivity tests by varying topography, land use, and horizontal and vertical grid spacings to arrive at optimum configurations for reducing modeling biases in comparison with field meteorological observations. Overall, WRF shows a better performance when accounting for the mine topography and modified land use. As a result, the model biases reduce from 1.10 to 0.08 m s−1, from 1.04 to 0.50 m s−1, from 0.98 to 0.32 K, and from 45.7 to 17.3 W m−2, for near-surface wind speed, boundary layer wind speed, near-surface potential temperature, and turbulent sensible heat flux, respectively. Refining the model horizontal and vertical grid spacings results in bias reductions from 3.31 to 0.08 and from 0.80 to −0.11 m s−1 for near-surface and boundary layer wind speeds, respectively. The simulation results also agree with previous observations of meteorological effects on enclosed Earth depressions, characterized by formation of a cool pool of air, reduced wind speeds, and horizontal wind circulations at the bottom of the depression under thermally stable conditions. The results suggest that such configurations for WRF are necessary to arrive at more accurate meteorological predictions over complex open-pit mining terrains with similar features.

2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


2016 ◽  
Vol 31 (4) ◽  
pp. 1343-1361 ◽  
Author(s):  
Richard J. Krupar ◽  
John L. Schroeder ◽  
Douglas A. Smith ◽  
Song-Lak Kang ◽  
Sylvie Lorsolo

Abstract A set of velocity–azimuth display (VAD) wind speed profiles derived from coastal Weather Surveillance Radar-1988 Doppler (WSR-88D) systems was paired with Automated Surface Observing System (ASOS) 10-m standardized mean and nonstandardized gust wind speeds measured within 10 km of nearby WSR-88Ds. The goal was to formulate an appropriate methodology and empirical relationships to estimate overland near-surface wind conditions in landfalling tropical cyclones (TCs) using VAD tropical cyclone boundary layer (TCBL) lower-tropospheric wind measurements. A total of 17 TCs and seven ASOS/WSR-88D sites were used to construct a unique comparative dataset. Four estimation methods including the log and power laws, mean and gust wind speed ratio (WSR) methods, and curve fitting with linear regression and polynomial fits were evaluated. Results from the evaluation show that WSR-88D site-specific linear regression equations using a VAD 0–200-m layer average wind speed and nonzero intercepts provided the most accurate predictions of the ASOS 10-m standardized mean wind speed. Results also show that a non-site-specific linear regression model using a VAD 0–500-m mean boundary layer (MBL) wind speed and nonzero intercept is 1.07% more accurate than using a single-gust WSR to predict ASOS 10-m nonstandardized gust wind speeds. Only 2.15% of the ASOS 10-m nonstandardized maximum 3-s gust wind speeds were found to exceed the VAD 0–500-m MBL wind speed, indicating that the VAD 0–500-m MBL wind speed represents a viable source of momentum available for transport to the surface in the form of a gust.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Junhua Yang ◽  
Keqin Duan

To improve the simulation performance of mesoscale models in the northeastern Tibetan Plateau, two reanalysis initial datasets (NCEP FNL and ERA-Interim) and two MODIS (Moderate-Resolution Imaging Spectroradiometer) land-use datasets (from 2001 and 2010) are used in WRF (Weather Research and Forecasting) modeling. The model can reproduce the variations of 2 m temperature (T2) and 2 m relative humidity (RH2), but T2 is overestimated and RH2 is underestimated in the control experiment. After using the new initial drive and land use data, the simulation precision in T2 is improved by the correction of overestimated net energy flux at surface and the RH2 is improved due to the lower T2 and larger soil moisture. Due to systematic bias in WRF modeling for wind speed, we design another experiment that includes the Jimenez subgrid-scale orography scheme, which reduces the frequency of low wind speed and increases the frequency of high wind speed and that is more consistent with the observation. Meanwhile, the new drive and land-use data lead to lower boundary layer height and influence the potential temperature and wind speed in both the lower atmosphere and the upper layer, while the impact on water vapor mixing ratio is primarily concentrated in the lower atmosphere.


2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


2012 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J. G. Pedersen ◽  
M. Kelly ◽  
S.-E. Gryning ◽  
R. Floors ◽  
E. Batchvarova ◽  
...  

Abstract. Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when the simulated flow is driven by a both time- and height-dependent geostrophic wind and a time-dependent surface heat flux. This underlines the importance of mesoscale effects when the flow above the atmospheric surface layer is simulated with a computational fluid dynamics model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Patrick Moriarty

AbstractLong-term weather and climate observatories can be affected by the changing environments in their vicinity, such as the growth of urban areas or changing vegetation. Wind plants can also impact local atmospheric conditions through their wakes, characterized by reduced wind speed and increased turbulence. We explore the extent to which the wind plants near an atmospheric measurement site in the central United States have affected their long-term measurements. Both direct observations and mesoscale numerical weather prediction simulations demonstrate how the wind plants induce a wind deficit aloft, especially in stable conditions, and a wind speed acceleration near the surface, which extend $$\sim 30$$ ∼ 30  km downwind of the wind plant. Turbulence kinetic energy is significantly enhanced within the wind plant wake in stable conditions, with near-surface observations seeing an increase of more than 30% a few kilometers downwind of the plants.


2014 ◽  
Vol 14 (4) ◽  
pp. 1999-2013 ◽  
Author(s):  
J. C. Péré ◽  
B. Bessagnet ◽  
M. Mallet ◽  
F. Waquet ◽  
I. Chiapello ◽  
...  

Abstract. In this study, we investigate the shortwave aerosol direct radiative forcing (ADRF) and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an offline coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF) models. First, simulations for the period 5–12 August 2010 have been evaluated by using AERONET (AErosol RObotic NETwork) and satellite measurements of the POLarization and Directionality of the Earth's Reflectance (POLDER) and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) sensors. During this period, elevated POLDER aerosol optical thickness (AOT) is found over a large part of eastern Europe, with values above 2 (at 550 nm) in the aerosol plume. According to CALIOP observations, particles remain confined to the first five kilometres of the atmospheric layer. Comparisons with satellite measurements show the ability of CHIMERE to reproduce the regional and vertical distribution of aerosols during their transport from the source region. Over Moscow, AERONET measurements indicate an important increase of AOT (340 nm) from 0.7 on 5 August to 2–4 between 6 and 10 August when the aerosol plume was advected over the city. Particles are mainly observed in the fine size mode (radius in the range 0.2–0.4 μm) and are characterized by elevated single-scattering albedo (SSA) (0.95–0.96 between 440 and 1020 nm). Comparisons of simulations with AERONET measurements show that aerosol physical–optical properties (size distribution, AOT, SSA) have been well simulated over Moscow in terms of intensity and/or spectral dependence. Secondly, modelled aerosol optical properties have been used as input in the radiative transfer code of WRF to evaluate their direct radiative impact. Simulations indicate a significant reduction of solar radiation at the ground (up to 80–150 W m−2 in diurnal averages over a large part of eastern Europe due to the presence of the aerosol plume. This ADRF causes an important reduction of the near-surface air temperature between 0.2 and 2.6° on a regional scale. Moscow has been affected by the aerosol plume, especially between 6 and 10 August. During this period, aerosol causes a significant reduction of surface shortwave radiation (up to 70–84 W m−2 in diurnal averages) with a moderate part (20–30%) due to solar absorption within the aerosol layer. The resulting feedbacks lead to a cooling of the air up to 1.6° at the surface and 0.1° at an altitude of 1500–2000 m (in diurnal averages), that contribute to stabilize the atmospheric boundary layer (ABL). Indeed, a reduction of the ABL height of 13 to 65% has been simulated during daytime in presence of aerosols. This decrease is the result of a lower air entrainment as the vertical wind speed in the ABL is shown to be reduced by 5 to 80% (at midday) when the feedback of the ADRF is taken into account. However, the ADRF is shown to have a lower impact on the horizontal wind speed, suggesting that the dilution of particles would be mainly affected by the weakening of the ABL development and associated vertical entrainment. Indeed, CHIMERE simulations driven by the WRF meteorological fields including this ADRF feedback result in a large increase in the modelled near-surface PM10 concentrations (up to 99%). This is due to their lower vertical dilution in the ABL, which tend to reduce model biases with the ground PM10 values observed over Moscow during this specific period.


2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


2021 ◽  
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

<p>The ongoing development of NWP (Numerical Weather Prediction) models and their increasing horizontal resolution have significantly improved forecasting capabilities. However, in the polar regions models struggle with the representation of near-surface atmospheric properties and the vertical structure of the atmospheric boundary layer (ABL) over sea ice. Particularly difficult to resolve are near-surface temperature, wind speed, and humidity, along with diurnal changes of those properties. Many of the complex processes happening at the interface of sea ice and atmosphere, i.e. vertical fluxes, turbulence, atmosphere - surface coupling are poorly parameterized or not represented in the models at all. Limited data coverage and our poor understanding of the complex processes taking place in the polar ABL limit the development of suitable parametrizations. We try to contribute to the ongoing effort to improve the forecast skill in polar regions through the analysis of unmanned aerial vehicles (UAVs) and automatic weather station (AWS) atmospheric measurements from the coastal area of Bothnia Bay (Wenta et. al., 2021), and the application of those datasets for the analysis of regional NWP models' forecasts. </p><p>Data collected during HAOS (Hailuoto Atmospheric Observations over Sea ice) campaign (Wenta et. al., 2021) is used for the evaluation of regional NWP models results from AROME (Applications of Research to Operations at Mesoscale) - Arctic, HIRLAM (High Resolution Limited Area Model) and WRF (Weather Research and Forecasting). The presented analysis focuses on 27 Feb. 2020 - 2 Mar. 2020, the time of the HAOS campaign, shortly after the formation of new, thin sea ice off the westernmost point of Hailuoto island.  Throughout the studied period weather conditions changed from very cold (-14℃), dry and cloud-free to warmer (~ -5℃), more humid and opaquely cloudy. We evaluate models’ ability to correctly resolve near-surface temperature, humidity, and wind speed, along with vertical changes of temperature and humidity over the sea ice. It is found that generally, models struggle with an accurate representation of surface-based temperature inversions, vertical variations of humidity, and temporal wind speed changes. Furthermore, a WRF Single Columng Model (SCM) is launched to study whether specific WRF planetary boundary layer parameterizations (MYJ, YSU, MYNN, QNSE), vertical resolution, and more accurate representation of surface conditions increase the WRF model’s ability to resolve the ABL above sea ice in the Bay of Bothnia. Experiments with WRF SCM are also used to determine the possible reasons behind model’s biases. Preliminary results show that accurate representation of sea ice conditions, including thickness, surface temperature, albedo, and snow coverage is crucial for increasing the quality of NWP models forecasts. We emphasize the importance of further development of parametrizations focusing on the processes at the sea ice-atmosphere interface.</p><p> </p><p>Reference:</p><p>Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., and Herman, A.: Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea), Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, 2021. </p><p><br><br><br><br><br><br></p>


Sign in / Sign up

Export Citation Format

Share Document