Atlantic coastal sea level variability and synoptic-scale meteorological forcing

Abstract Anomalous sea levels along the Mid- and South- Atlantic coasts of the United States are often linked to atmosphere- ocean dynamics, remote- and local- scale forcing and other factors linked to cyclone passage, winds, waves, and storm surge. Herein, we examine sea level variability along the U.S. Atlantic coast through satellite altimeter and coastal tide gauge data within the context of synoptic-scale weather pattern forcing. Altimetry, derived from sea level anomaly (SLA) data between 1993 and 2019 were compared with Self Organizing Map (SOM)-based atmospheric circulation and surface wind field categorizations to reveal spatiotemporal patterns and their inter-relationships with high water-level conditions at tide gauges. Regional elevated sea level patterns and variability were strongly associated with synergistic patterns of atmospheric circulation and wind. Recurring atmospheric patterns associated with high-tide flooding events and flood risk were identified, as were specific regional oceanographic variability patterns of SLA response. The incorporation of combined metrics of wind and circulation patterns further isolate atmospheric drivers of high tide flood events and may have particular significance for predicting future flood events over multiple spatial and temporal scales.

2018 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron K. Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally, however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide-surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, twenty-year long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Results provide insights into how future atmospheric circulation changes may impact Australia's coastal zone and highlight regions of potential sensitivity to atmospheric circulation changes. Areas of note are the Gulf of Carpentaria in the north where changes to the northwest monsoon could lead to relatively large increases in extreme sea levels during Austral summer. For the southern mainland coast the simulated scenarios suggest that a southward movement of the subtropical ridge leads to a small reduction in sea level extremes.


2019 ◽  
Vol 36 (2) ◽  
pp. 297-315
Author(s):  
Jenn-Shyong Chen ◽  
Jian-Wu Lai ◽  
Hwa Chien ◽  
Chien-Ya Wang ◽  
Ching-Lun Su ◽  
...  

Abstract A VHF pulsed radar system was set up on the Taoyuan County seashore (24°57′58″N, 121°00′30″E; Taiwan) to observe the sea surface in the northern Taiwan Strait for the first time. The radar used a four-element, vertically polarized Yagi antenna to transmit the 52-MHz radar wave. The receiving linear array consists of four vertical dipole antennas that were located 3 m apart and attached with four independent and identical receivers. With the multichannel echoes, the direction of arrival (DOA) of the radar echoes were determined by using an optimization beamforming approach—the Capon method. Echo intensity was observed to vary principally in semidiurnal oscillation, which matched well the time series of tide gauge measurements and sea level simulations. In addition, the oscillatory characteristics of Doppler/radial velocity of the VHF radar were generally consistent with that of the HF coastal ocean dynamics applications radar (CODAR) nearby. Nevertheless, the contributions of various tidal modes to the parameters of DOA, echo intensity, radial velocity, and spectral width, varied with the range and time period (e.g., neap or spring tides). For example, the semidiurnal tides governed the variation in the echo center only in the range interval between ~15 and ~25 km from the seashore but dominated other parameters throughout the detectable range. Correlations and phase relationships between these parameters were diverse; they varied with time and had dramatic changes at around the distances of 3 and 10 km. Possible causes of these features were discussed, including sea surface wind, nearshore current, sea level height, and bathymetric effect.


Author(s):  
M. Hernández ◽  
C. A. Martínez ◽  
O. Marzo

Abstract. The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.


Ocean Science ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 997-1016
Author(s):  
Tal Ezer ◽  
Sönke Dangendorf

Abstract. A new monthly global sea level reconstruction for 1900–2015 was analyzed and compared with various observations to examine regional variability and trends in the ocean dynamics of the western North Atlantic Ocean and the US East Coast. Proxies of the Gulf Stream (GS) strength in the Mid-Atlantic Bight (GS-MAB) and in the South Atlantic Bight (GS-SAB) were derived from sea level differences across the GS. While decadal oscillations dominate the 116-year record, the analysis showed an unprecedented long period of weakening in the GS flow since the late 1990s. The only other period of long weakening in the record was during the 1960s–1970s, and red noise experiments showed that is very unlikely that those just occurred by chance. Ensemble empirical mode decomposition (EEMD) was used to separate oscillations at different timescales, showing that the low-frequency variability of the GS is connected to the Atlantic Multi-decadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The recent weakening of the reconstructed GS-MAB was mostly influenced by weakening of the upper mid-ocean transport component of AMOC as observed by the RAPID measurements for 2005–2015. Comparison between the reconstructed sea level near the coast and tide gauge data for 1927–2015 showed that the reconstruction underestimated observed coastal sea level variability for timescales less than ∼5 years, but lower-frequency variability of coastal sea level was captured very well in both amplitude and phase by the reconstruction. Comparison between the GS-SAB proxy and the observed Florida Current transport for 1982–2015 also showed significant correlations for oscillations with periods longer than ∼5 years. The study demonstrated that despite the coarse horizontal resolution of the global reconstruction (1∘ × 1∘), long-term variations in regional dynamics can be captured quite well, thus making the data useful for studies of long-term variability in other regions as well.


2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


2013 ◽  
Vol 28 (3) ◽  
pp. 704-710 ◽  
Author(s):  
John T. Abatzoglou ◽  
Renaud Barbero ◽  
Nicholas J. Nauslar

Abstract Santa Ana winds (SAW) are among the most notorious fire-weather conditions in the United States and are implicated in wildfire and wind hazards in Southern California. This study employs large-scale reanalysis data to diagnose SAW through synoptic-scale dynamic and thermodynamic factors using mean sea level pressure gradient and lower-tropospheric temperature advection, respectively. A two-parameter threshold model of these factors exhibits skill in identifying surface-based characteristics of SAW featuring strong offshore winds and extreme fire weather as viewed through the Fosberg fire weather index across Remote Automated Weather Stations in southwestern California. These results suggest that a strong northeastward gradient in mean sea level pressure aligned with strong cold-air advection in the lower troposphere provide a simple, yet effective, means of diagnosing SAW from synoptic-scale reanalysis. This objective method may be useful for medium- to extended-range forecasting when mesoscale model output may not be available, as well as being readily applied retrospectively to better understand connections between SAW and wildfires in Southern California.


2020 ◽  
Author(s):  
Sida Li ◽  
Thomas Wahl ◽  
David Jay ◽  
Stefan Talke ◽  
Lintao Liu

<p>Nuisance flooding (NF) or high tide flooding describes minor nondestructive flooding which can nonetheless cause substantial negative socio-economic impacts to coastal communities. The frequency of NF events has increased and accelerated over the past decades along the U.S. coast, leading to changes ranging from 300% to 900%. This is mainly a result of sea level rise reducing the gap between high tidal datum and flood thresholds. While long-term relative sea level rise is the main driver for the increased number of NF events, other factors such as variability in the Gulf stream, the storm climate, and infragravity waves can also contribute. Another important driver that is often overlooked is related to changes in coastal and estuary tides, through secular trends in the amplitudes of major tidal constituents. In this presentation we assess the role of tidal changes in modulating the frequency of NF events along the U.S. coastline. We analyze hourly records from 49 U.S. tide gauges for which the National Weather Service has defined NF thresholds. We find that (1) overall across all tide gauges the number of NF days has increased since 1950 due to changes in coastal tides, adding up to 100 NF days in recent years (on top of the increase due to relative sea level rise), (2) more tide gauges experience an increase in NF events than a decrease due to changes in tides, (3) tide gauges in major estuaries which have undergone major anthropogenic alterations experience the strongest changes; in Wilmington (Cape Fear estuary), for example, 10-40% of NF events in recent years can be attributed to tidal changes. </p>


Sign in / Sign up

Export Citation Format

Share Document