scholarly journals Analysis of the sea-level variability along the Chinese coast and estimation of the impact of a CO2-perturbed atmospheric circulation

1998 ◽  
Vol 50 (3) ◽  
pp. 333-347 ◽  
Author(s):  
Maochang Cui ◽  
Eduardo Zorita
2018 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron K. Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally, however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide-surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, twenty-year long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Results provide insights into how future atmospheric circulation changes may impact Australia's coastal zone and highlight regions of potential sensitivity to atmospheric circulation changes. Areas of note are the Gulf of Carpentaria in the north where changes to the northwest monsoon could lead to relatively large increases in extreme sea levels during Austral summer. For the southern mainland coast the simulated scenarios suggest that a southward movement of the subtropical ridge leads to a small reduction in sea level extremes.


Abstract Anomalous sea levels along the Mid- and South- Atlantic coasts of the United States are often linked to atmosphere- ocean dynamics, remote- and local- scale forcing and other factors linked to cyclone passage, winds, waves, and storm surge. Herein, we examine sea level variability along the U.S. Atlantic coast through satellite altimeter and coastal tide gauge data within the context of synoptic-scale weather pattern forcing. Altimetry, derived from sea level anomaly (SLA) data between 1993 and 2019 were compared with Self Organizing Map (SOM)-based atmospheric circulation and surface wind field categorizations to reveal spatiotemporal patterns and their inter-relationships with high water-level conditions at tide gauges. Regional elevated sea level patterns and variability were strongly associated with synergistic patterns of atmospheric circulation and wind. Recurring atmospheric patterns associated with high-tide flooding events and flood risk were identified, as were specific regional oceanographic variability patterns of SLA response. The incorporation of combined metrics of wind and circulation patterns further isolate atmospheric drivers of high tide flood events and may have particular significance for predicting future flood events over multiple spatial and temporal scales.


2008 ◽  
Vol 38 (8) ◽  
pp. 1731-1747 ◽  
Author(s):  
Yoshi N. Sasaki ◽  
Shoshiro Minobe ◽  
Niklas Schneider ◽  
Takashi Kagimoto ◽  
Masami Nonaka ◽  
...  

Abstract Sea level variability and related oceanic changes in the South Pacific from 1970 to 2003 are investigated using a hindcast simulation of an eddy-resolving ocean general circulation model (OGCM) for the Earth Simulator (OFES), along with sea level data from tide gauges since 1970 and a satellite altimeter since 1992. The first empirical orthogonal function mode of sea level anomalies (SLAs) of OFES exhibits broad positive SLAs over the central and western South Pacific. The corresponding principal component indicates roughly stable high, low, and high SLAs, separated by a rapid sea level fall in the late 1970s and sea level rise in the late 1990s, consistent with tide gauge and satellite observations. These decadal changes are accompanied by circulation changes of the subtropical gyre at 1000-m depth, and changes of upper-ocean zonal current and eddy activity around the Tasman Front. In general agreement with previous related studies, it is found that sea level variations in the Tasman Sea can be explained by propagation of long baroclinic Rossby waves forced by wind stress curl anomalies, if the impact of New Zealand is taken into account. The corresponding atmospheric variations are associated with decadal variability of El Niño–Southern Oscillation (ENSO). Thus, decadal sea level variability in the western and central South Pacific in the past three and half decades and decadal ENSO variability are likely to be connected. The sea level rise in the 1990s, which attracted much attention in relation to the global warming, is likely associated with the decadal cooling in the tropical Pacific.


2012 ◽  
Vol 19 (1) ◽  
pp. 95-111 ◽  
Author(s):  
R. V. Donner ◽  
R. Ehrcke ◽  
S. M. Barbosa ◽  
J. Wagner ◽  
J. F. Donges ◽  
...  

Abstract. The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.


2021 ◽  
Author(s):  
Igor Dmitrenko ◽  
Denis Volkov ◽  
Tricia Stadnyk ◽  
Andrew Tefs ◽  
David Babb ◽  
...  

Abstract. In recent years, significant trends toward earlier breakup and later freeze‐up of sea-ice in Hudson Bay have led to a considerable increase in shipping activity through the Port of Churchill, which is located in western Hudson Bay and is the only deep-water ocean port in the province of Manitoba. Therefore, understanding sea level variability at the Port is an urgent issue crucial for safe navigation and coastal infrastructure. Using tidal gauge data from the Port along with an atmospheric reanalysis and Churchill River discharge, we assess environmental factors impacting synoptic to seasonal variability of sea-level at Churchill. An atmospheric vorticity index used to describe the wind forcing was found to correlate with sea level at Churchill. Statistical analyses show that, in contrast to earlier studies, local discharge from the Churchill River can only explain up to 5 % of the sea level variability. The cyclonic wind forcing contributes from 22 % during the ice-covered winter-spring season to 30 % during the ice-free summer-fall season due to cyclone-induced storm surge generated along the coast. Multiple regression analysis revealed that wind forcing and local river discharge combined can explain up to 32 % of the sea level variability at Churchill. Our analysis further revealed that the seasonal cycle of sea level at Churchill appears to be impacted by the seasonal cycle in atmospheric circulation rather than by the seasonal cycle in local discharge from the Churchill River, particularly post-construction of the Churchill River diversion in 1977. Sea level at Churchill shows positive anomalies for September–November compared to June–August. This seasonal difference was also revealed for the entire Hudson Bay coast using satellite-derived sea level altimetry. This anomaly was associated with enhanced cyclonic atmospheric circulation during fall, reaching a maximum in November, which forced storm surges along the coast. Complete sea-ice cover during winter impedes momentum transfer from wind stress to the water column, reducing the impact of wind forcing on sea level variability. Expanding our observations to the bay-wide scale, we confirmed the process of wind-driven sea-level variability with (i) tidal-gauge data from eastern Hudson Bay and (ii) satellite altimetry measurements. Ultimately, we find that cyclonic winds generate sea level rise along the western and eastern coasts of Hudson Bay at the synoptic and seasonal time scales, suggesting an amplification of the bay-wide cyclonic geostrophic circulation in fall (October–November), when cyclonic vorticity is enhanced, and Hudson Bay is ice-free.


2013 ◽  
Vol 9 (2) ◽  
pp. 2183-2216
Author(s):  
P. Beghin ◽  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
...  

Abstract. The development of large continental-scale ice sheets over Canada and Northern Europe during the last glacial cycle likely modified the track of stationary waves and influenced the location of growing ice sheets through changes in accumulation and temperature patterns. Although they are often mentioned in the literature, these feedback mechanisms are poorly constrained and have never been studied throughout an entire glacial-interglacial cycle. Using the climate model of intermediate complexity CLIMBER-2 coupled with the 3-D ice-sheet model GRISLI, we investigate the impact of stationary waves on the construction of past Northern Hemisphere ice sheets during the past glaciation. The stationary waves are not explicitly computed in the model but their effect on sea-level pressure is parameterized. Several parameterizations have been tested allowing to study separately the effect of surface temperature (thermal forcing) and topography (orographic forcing) on sea-level pressure, and therefore on atmospheric circulation and ice-sheet surface mass balance. We show that the response of ice sheets to thermal and/or orographic forcings is rather different. At the beginning of the glaciation, the orographic effect favors the growth of the Laurentide ice sheet, whereas Fennoscandia appears rather sensitive to the thermal effect. Using the ablation parameterization as a trigger to artificially modify the size of one ice sheet, the remote influence of one ice sheet on the other is also studied as a function of the stationary wave parameterizations. The sensitivity of remote ice sheets is shown to be highly sensitive to the choice of these parameterizations with a larger response when orographic effect is accounted for. Results presented in this study suggest that the various spatial distributions of ice sheets could be partly be explained by the feedbacks mechanisms occurring between ice sheets and atmospheric circulation.


2012 ◽  
Vol 31 (3) ◽  
pp. 25-32
Author(s):  
Leszek Kolendowicz

Abstract. The aim of the study was an analysis of the impact of atmospheric circulation over the territory of Europe on the frequency of occurrence of heavy thunderstorms on German Lowlands and on Polish Lowlands in the period 1951-2008. The atmospheric circulation in days with investigated phenomena was illustrated as the averaged image of the atmospheric pressure field over Europe (sea level pressure and 500 hPa geopotential heights). Heavy thunderstorm phenomena occur as a result of low pressure systems or low pressure troughs moving above investigated area and bringing cold air masses. Usually, the distribution of isobars at sea level indicates the occurrence of atmospheric fronts accompanying a low pressure system.


2017 ◽  
Vol 30 (18) ◽  
pp. 7271-7291 ◽  
Author(s):  
Claudio Saffioti ◽  
Erich M. Fischer ◽  
Reto Knutti

Abstract The influence of atmospheric circulation on winter temperature and precipitation trends over Europe in the period 2006–50 is investigated in a 21-member initial condition ensemble from a fully coupled global climate model and in a multimodel framework consisting of 40 different models. Five versions of a dynamical adjustment method based on empirical orthogonal function analysis of sea level pressure are introduced, and their performance in removing the effect of atmospheric circulation on temperature and precipitation is tested. The differences in atmospheric circulation as simulated by different models in their control runs and under the historical and representative concentration pathway 8.5 (RCP8.5) forcing scenarios are investigated. Dynamical adjustment is applied to the multimodel ensemble to demonstrate that a substantial fraction of the uncertainty in projected European temperature and precipitation trends is explained by atmospheric circulation variability. A statistically significant response of sea level pressure to anthropogenic forcing is identified in the multimodel ensemble under the RCP8.5 scenario. This forced response in atmospheric circulation is associated with a dynamical contribution to the long-term multimodel mean temperature and precipitation trends. The results highlight the importance of accounting for the impact of atmospheric circulation variability on trends in regional climate projections.


2021 ◽  
Author(s):  
Anara Kudabayeva ◽  
Michael Schindelegger ◽  
Rui M. Ponte ◽  
Bernd Uebbing

<p> <span>Accurate long-term measurements of coastal sea level are fundamental for understanding changes in ocean circulation and assessing the impact of low-frequency sea-level variability on, e.g., near-shore ecosystems, groundwater dynamics, and coastal flooding. However, tide gauges are sparsely distributed in space and the extent to which satellite altimetry data can be used to infer the complex patterns of sea level near the coast is a subject of debate. Here, we revisit earlier attempts of connecting tide gauge and altimetry observations of low-frequency sea-level changes across the coastal zone. Our interest lies both in short-scale spatial structures indicative of dynamic decoupling between coastal areas and the deep ocean, and in the benefits of using a reprocessed, coastal altimetry product (X-TRACK) for the analysis. The mean annual cycle is chosen as a first benchmark and more than 200 globally distributed tide gauges are examined. We compute statistics between tide gauge and along-track altimeter series within spatial radii of 20 km (“coastal”) and 134 km of the tide gauge location, and additionally split altimetry data inside the 134-km circle into “shallow” and “deep” groups relative to the 200-m isobaths. Globally averaged RMS (root-mean-square) differences in the “coastal” and “shallow” categories are 1.9 and 2.4 cm for the X-TRACK product, somewhat lower than the corresponding values from the non-optimized Integrated Multi-Mission Ocean Altimeter Data for Climate Research Version 4.2 (2.3 and 2.6 cm). Examination of inter-annual sea-level variability from 1993 to 2019 is underway, with initial focus on regions where poor correspondence between satellite and tide gauge sea-level estimates has been noted in the past (e.g., US East Coast and western South America). At most locations analyzed so far, RMS differences decrease and correlations improve as one approaches the coast along the satellite tracks. However, the X-TRACK estimates tend to become erratic within 20–30 km from the tide gauge, suggesting that the usability of classical nadir altimetry measurements for studying short-scale coastal dynamics is still limited despite ongoing reprocessing efforts.</span></p>


Sign in / Sign up

Export Citation Format

Share Document