scholarly journals The Role of Criticality on the Horizontal and Vertical Scales of Extratropical Eddies in a Dry GCM

2014 ◽  
Vol 71 (7) ◽  
pp. 2300-2318 ◽  
Author(s):  
Junyi Chai ◽  
Geoffrey K. Vallis

Abstract This paper discusses the sensitivity of the horizontal and vertical scales of extratropical eddies when criticality is varied in a dry, primitive-equation, general circulation model. Criticality is a measure of extratropical isentropic slope and when defined appropriately its value is often close to 1 for Earth’s climate. The model is forced by a Newtonian relaxation of temperature to a prescribed temperature profile, and criticality is increased by increasing the thermal relaxation rate on the mean flow. When criticality varies near 1, it is shown that there exists a weakly nonlinear regime in which the eddy scale increases with criticality without involving an inverse cascade, while at the same time the Rossby radius may in fact decrease. The quasigeostrophic instability of the Charney problem is revisited. It is demonstrated that both the horizontal and vertical scales of the most unstable wave depend on criticality, and simple estimates for the two scales are obtained. The authors reconcile the opposite trends of the eddy scale and Rossby radius and obtain an estimate for the eddy scale in terms of the Rossby radius and criticality that is broadly consistent with simulations.

2019 ◽  
Vol 49 (10) ◽  
pp. 2553-2570 ◽  
Author(s):  
Mads B. Poulsen ◽  
Markus Jochum ◽  
James R. Maddison ◽  
David P. Marshall ◽  
Roman Nuterman

AbstractAn interpretation of eddy form stress via the geometry described by the Eliassen–Palm flux tensor is explored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form stress is fully described by a vertical ellipse, whose size, shape, and orientation with respect to the mean flow shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this geometric framework is here used to form a Gent–McWilliams eddy transfer coefficient that depends on eddy energy and a nondimensional geometric parameter α, bounded in magnitude by unity. The parameter α expresses the efficiency by which eddies exchange energy with baroclinic mean flow via along-gradient eddy buoyancy flux—a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving ocean general circulation model is used to estimate the spatial structure of α in the Southern Ocean and assess its potential to form a basis for parameterization. The eddy efficiency α averages to a low but positive value of 0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy from the mean flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes are weakly anisotropic on average. The eddy efficiency is subject to pronounced vertical structure and is maximum at ~3-km depth, where eddy buoyancy fluxes tend to be directed most downgradient. Since α partly sets the eddy form stress in the Southern Ocean, a parameterization for α must reproduce its vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.


2020 ◽  
Vol 8 (9) ◽  
pp. 681
Author(s):  
Saeed Hariri

This paper describes the near-surface transport properties and Lagrangian statistics in the Adriatic semi-enclosed basin using synthetic drifters. Lagrangian transport models were used to simulate synthetic trajectories from the mean flow fields obtained by the Massachusetts Institute of Technology general circulation model (MITgcm), implemented in the Adriatic from October 2006 until December 2008. In particular, the surface circulation properties in two contrasting years (2007 had a mild winter and cold fall, while 2008 had a normal winter and hot summer) are compared here. In addition, the Lagrangian statistics for the entire Adriatic Basin after removing the Eulerian mean circulation for numerical particles were calculated. The results indicate that the numerical particles were slower in this simulation when compared with the real drifters. This is because of the reduced energetic flow field generated by the MIT general circulation model during the selected years. The numerical results showed that the balanced effects of the wind-driven recirculation in the northernmost area(which would be a sea response to the Bora wind field) and the Po River discharge cause the residence times to be similar during the two selected years (182 and 185 days in 2007 and 2008, respectively). Furthermore, the mean angular momentum, diffusivity, and Lagrangian velocity covariance values are smaller than in the real drifter observations, while the maximum Lagrangian integral time scale is the same.


2018 ◽  
Vol 75 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Nicholas J. Lutsko

An equatorial heat source mimicking the strong diabatic heating above the west Pacific is added to an idealized, dry general circulation model. For small (<0.5 K day−1) heating rates the responses closely match the expectations from linear Matsuno–Gill theory, though the amplitudes of the responses increase sublinearly. This “linear” regime breaks down for larger heating rates and it is found that this is because the stability of the tropical atmosphere increases. At the same time, the equatorial winds increasingly superrotate. This superrotation is driven by stationary eddy momentum fluxes by the waves excited by the heating and is damped by the vertical advection of low-momentum air by the mean flow and, at large heating rates, by the divergence of momentum by transient eddies. These dynamics are explored in additional experiments in which the equator-to-pole temperature gradient is varied. Very strong superrotation is produced when a large heating rate is applied to a setup with a relatively weak equator-to-pole temperature gradient, though there is no evidence that this is a case of “runaway” superrotation.


2009 ◽  
Vol 66 (5) ◽  
pp. 1366-1383 ◽  
Author(s):  
Isabella Bordi ◽  
Klaus Fraedrich ◽  
Michael Ghil ◽  
Alfonso Sutera

Abstract The atmospheric general circulation is characterized by both single- and double-jet patterns. The double-jet structure of the zonal mean zonal wind is analyzed in Southern Hemisphere observations for the two calendar months of November and April. The observed features are studied further in an idealized quasigeostrophic and a simplified general circulation model (GCM). Results suggest that capturing the bimodality of the zonal mean flow requires the parameterization of momentum and heat fluxes associated with baroclinic instability of the three-dimensional fields. The role of eddy heat fluxes in generating the observed double-jet pattern is ascertained by using an analytical Eady model with stratospheric easterlies, in which a single wave disturbance interacts with the mean flow. In this model, the dual jets are generated by the zonal mean flow correction. Sensitivity of the results to the tropospheric vertical wind shear (or, equivalently, the meridional temperature gradient in the basic state’s troposphere) is also studied in the Eady model and compared to related experiments using the simplified GCM.


2010 ◽  
Vol 40 (7) ◽  
pp. 1597-1612 ◽  
Author(s):  
Motohiko Tsugawa ◽  
Hiroyasu Hasumi

Abstract The Natal pulses, solitary cyclonic meanders in the Agulhas Current, are reproduced in an ocean general circulation model. The model covers the region around the Agulhas Current with a grid fine enough to reproduce major eddies. The features of the reproduced Natal pulses are consistent with observational evidences in the following respects: they are generated at the Natal Bight when anticyclonic eddies come, move downstream along the Agulhas Current at speeds about 20 km day−1, and grow in its horizontal size as they move. The present simulation shows that the generation and growth of the Natal pulse occurs because of the interaction between the mean flow of the Agulhas Current and an anticyclonic eddy. A supplemental simulation, where the topography of the Natal Bight is modified, indicates that the topography of the Natal Bight does not cause the generation of the Natal pulses, contrary to a previous suggestion.


2019 ◽  
Vol 76 (8) ◽  
pp. 2375-2397
Author(s):  
Todd A. Mooring ◽  
Isaac M. Held ◽  
R. John Wilson

Abstract The extent to which the eddy statistics of the Martian atmosphere can be inferred from the mean state and highly simplified assumptions about diabatic and frictional processes is investigated using an idealized general circulation model (GCM) with Newtonian relaxation thermal forcing. An iterative technique, adapted from previous terrestrial studies, is used to generate radiative equilibrium temperatures such that the three-dimensional time-mean temperature fields of the idealized model match means computed from the Mars Analysis Correction Data Assimilation (MACDA). Focusing on a period of strong Northern Hemisphere eddy activity prior to winter solstice, it is found that the idealized model reproduces some key features of the spatial patterns of the MACDA eddy temperature variance and kinetic energy fields. The idealized model can also simulate aspects of MACDA’s seasonal cycle of spatial patterns of low-level eddy meridional wind and temperature variances. The most notable weakness of the model is its eddy amplitudes—both their absolute values and seasonal variations are quite unrealistic, for reasons unclear. The idealized model was also run with a mean flow based on output from the Geophysical Fluid Dynamics Laboratory (GFDL) full-physics Mars GCM. The idealized model captures the difference in mean flows between MACDA and the GFDL Mars GCM and reproduces a bias in the more complex model’s eddy zonal wavenumber distribution. This implies that the mean flow is an important influence on transient eddy wavenumbers and that improving the GFDL Mars GCM’s mean flow would make its eddy scales more realistic.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

&lt;p&gt;General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s&lt;sup&gt;&lt;/sup&gt;with rates of 0.2&amp;#8211;0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.&lt;/p&gt;


2009 ◽  
Vol 22 (22) ◽  
pp. 6089-6103 ◽  
Author(s):  
Richard T. Wetherald

Abstract This paper examines hydrological variability and its changes in two different versions of a coupled ocean–atmosphere general circulation model developed at the National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory and forced with estimates of future increases of greenhouse gas and aerosol concentrations. This paper is the second part, documenting potential changes in variability as greenhouse gases increase. The variance changes are examined using an ensemble of 8 transient integrations for an older model version and 10 transient integrations for a newer model. Monthly and annual data are used to compute the mean and variance changes. Emphasis is placed on computing and analyzing the variance changes for the middle of the twenty-first century and compared with those found in the respective control integrations. The hydrologic cycle intensifies because of the increase of greenhouse gases. In general, precipitation variance increases in most places. This is the case virtually everywhere the mean precipitation rate increases and many places where the precipitation decreases. The precipitation rate variance decreases in the subtropics, where the mean precipitation rate also decreases. The increased precipitation rate and variance, in middle to higher latitudes during late fall, winter, and early spring leads to increased runoff and its variance during that period. On the other hand, the variance changes of soil moisture are more complicated, because soil moisture has both a lower and upper bound that tends to reduce its fluctuations. This is particularly true in middle to higher latitudes during winter and spring, when the soil moisture is close to its saturation value at many locations. Therefore, changes in its variance are limited. Soil moisture variance change is positive during the summer, when the mean soil moisture decreases and is close to the middle of its allowable range. In middle to high northern latitudes, an increase in runoff and its variance during late winter and spring plus the decrease in soil moisture and its variance during summer lend support to the hypothesis stated in other publications that a warmer climate can cause an increasing frequency of both excessive discharge and drier events, depending on season and latitude.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


Sign in / Sign up

Export Citation Format

Share Document