scholarly journals Contributions of Surface Sensible Heat Fluxes to Tropical Cyclone. Part II: The Sea Spray Processes

2015 ◽  
Vol 72 (11) ◽  
pp. 4218-4236 ◽  
Author(s):  
Zhanhong Ma ◽  
Jianfang Fei ◽  
Xiaoping Cheng ◽  
Yuqing Wang ◽  
Xiaogang Huang

Abstract In Part II of this study, the roles of surface sensible heat fluxes (SHX) in tropical cyclones (TCs) are further investigated in the context of sea spray processes. Results show that the sea spray evaporation is favorable for the TC intensification through enhancing the surface latent heat fluxes (LHX). Unlike the results in Part I, the removal of SHX has led to a somewhat weaker TC by inclusion of sea spray. This is because the spray-mediated latent heat fluxes are simultaneously diminished after cutting down the SHX. Without the warming of SHX from the ocean, the surface air becomes cooler and thereby closer to saturation, which substantially hinders the evaporation of sea spray droplets. Therefore, the SHX are instrumental for sustaining the release of latent heat fluxes by sea spray evaporation. In the experiments of Part I and this study, the reduced total surface enthalpy fluxes as a result of the removal of SHX do not necessarily result in weakened TCs, while the larger LHX basically correspond to stronger TCs. This suggests that the TC intensity is largely dependent on the LHX rather than the total surface enthalpy fluxes, although the latter is generally dominated by the former. Relative roles of thermal and moisture effects in radially elevating the surface equivalent potential temperature θe are also compared. The contributions of thermal effects account for 30%–35% of the total changes in θe for mature TCs, no matter whether SHX from the ocean are included. This further implies that the SHX contribute insignificantly to the spinup of a TC.

2016 ◽  
Vol 73 (2) ◽  
pp. 869-890 ◽  
Author(s):  
Matthew J. Onderlinde ◽  
David S. Nolan

Abstract Tropical cyclone–relative environmental helicity (TCREH) is a measure of how the wind vector changes direction with height, and it has been shown to modulate the rate at which tropical cyclones (TCs) develop both in idealized simulations and in reanalysis data. The channels through which this modulation occurs remain less clear. This study aims to identify the mechanisms that lead to the observed variations in intensification rate. Results suggest that the difference in intensification rate between TCs embedded in positive versus negative TCREH primarily results from the position of convection and associated latent heat fluxes relative to the wind shear vector. When TCREH is positive, convection is more readily advected upshear and air parcels that experience larger fluxes are more frequently ingested into the TC core. Trajectories computed from high-resolution simulations demonstrate the recovery of equivalent potential temperature downwind of convection, latent heat flux near the TC core, and parcel routes through updrafts in convection. Differences in trajectory characteristics between TCs embedded in positive versus negative TCREH are presented. Contoured frequency-by-altitude diagrams (CFADs) show that convection is distributed differently around TCs embedded in environments characterized by positive versus negative TCREH. They also show that the nature of the most intense convection differs only slightly between cases of positive and negative TCREH. The results of this study emphasize the fact that significant variability in TC-intensification rate results from vertical variations in the environmental wind direction, even when the 850–200-hPa wind shear vector remains unchanged.


2008 ◽  
Vol 136 (5) ◽  
pp. 1686-1705 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Young Kwon

Abstract Under high-wind conditions, breaking waves and whitecaps eject large numbers of sea spray droplets into the atmosphere. The spray droplets originate with the same temperature and salinity as the ocean surface and thus increase the effective surface area of the ocean in contact with the atmosphere. As a result, the spray alters the total sensible and latent heat fluxes in the near-surface layer. The spray drops in the near-surface layer also result in horizontal and vertical spray-drag effects. The mass of the spray introduces an additional drag in the vertical momentum equation and tends to stabilize the lower boundary layer (BL). An initially axisymmetric control hurricane was created from the output of a real-data simulation of Hurricane Floyd (1999) using the nonhydrostatic fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5, version 3.4). The subsequent simulations, however, are not axisymmetric because the mass, wind, and spray fields are allowed to develop asymmetries. While such a design does not result in an axisymmetric simulation, the mass, wind, and spray fields develop more realistic structures than in an axisymmetric simulation. Simulations of the hurricane were conducted using a version of the Fairall et al. (1994) sea spray parameterization, which includes horizontal and vertical spray-drag effects. The simulations were run using varying spray-source function intensities and with and without horizontal and vertical spray-drag effects. At present, the relationship of spray production to surface wind speed is poorly known for hurricane-force wind regimes. Results indicate that spray modifies the hurricane structure in important but complex ways. Spray moistens the near-surface layer through increased evaporation. The effect of spray on the near-surface temperature profile depends on the amount of spray and its location in the hurricane. For moderate spray amounts, the near-surface layer warms within the high-wind region of the hurricane and cools at larger radii. For larger spray amounts, the near-surface layer warms relative to the moderate spray case. The moderate spray simulations (both with and without drag effects) have little net effect on the hurricane intensity. However, in the heavier spray runs, the total sensible heat flux is enhanced by 200 W m−2, while the total latent heat flux is enhanced by over 150 W m−2 in the high-wind region of the storm. Horizontal spray drag decreases wind speeds between 1 and 2 m s−1, and vertical spray drag increases the stability of the lower BL. In these heavy spray runs, the effect of the enhanced spray sensible and latent heat fluxes dominates the negative spray-drag effects, and as a result, the modeled storm intensity is upward of 10 mb stronger than the control run by the end of the simulation time. This study shows that spray has the capability of significantly affecting hurricane structure, but to do so, the amount of spray ejected into the BL of the hurricane would need to lie near the upper end of the currently hypothesized spray-source functions.


2014 ◽  
Vol 11 (16) ◽  
pp. 4507-4519 ◽  
Author(s):  
T. S. El-Madany ◽  
H. F. Duarte ◽  
D. J. Durden ◽  
B. Paas ◽  
M. J. Deventer ◽  
...  

Abstract. Sodar (SOund Detection And Ranging), eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyze their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site, then this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above-canopy drainage flows (ACDFs) and low-level jets (LLJs) according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases, upslope flows occurred, counteracting the general flow regime at nighttime. The observations suggest that the LLJs and ACDFs penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis of the vertical wind velocity and the steady-state test for the time series of the vertical wind velocity in combination with the horizontal wind component, the temperature, and carbon dioxide. Significantly higher fluxes of sensible heat, latent heat, and shear stress occurred during these periods. During LLJs and ACDFs, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJs and ACDFs, with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent turbulence periods exhibit a strong impact on nocturnal energy and mass fluxes.


2018 ◽  
Author(s):  
Sophie V. J. van der Horst ◽  
Andrew J. Pitman ◽  
Martin G. De Kauwe ◽  
Anna Ukkola ◽  
Gab Abramowitz ◽  
...  

Abstract. In response to a warming climate, temperature extremes are changing in many regions of the world. Therefore, understanding how the fluxes of sensible heat, latent heat and net ecosystem exchange respond and contribute to these changes is important. We examined 216 sites from the open access Tier 1 FLUXNET2015 and Free-Fair-Use La Thuile datasets, focussing only on observed (non-gap filled) data periods. We examined the availability of sensible heat, latent heat and net ecosystem exchange observations coincident in time with measured temperature for all temperatures, and separately for the upper and lower tail of the temperature distribution and expressed this availability as a measurement ratio. We showed that the measurement ratios for both sensible and latent heat fluxes are generally lower (0.79 and 0.73 respectively) than for temperature, and the measurement ratio of net ecosystem exchange measurements are appreciably lower (0.42). However, sites do exist with a high proportion of measured sensible and latent heat fluxes, mostly over the United States, Europe and Australia. Few sites have a high proportion of measured fluxes at the lower tail of the temperature distribution over very cold regions (e.g. Alaska, Russia) and at the upper tail in many warm regions (e.g. Central America and the majority of the Mediterranean region), and many of the world’s coldest and hottest regions are not represented in the freely available FLUXNET data at all (e.g. India, the Gulf States, Greenland and Antarctica). However, some sites do provide measured fluxes at extreme temperatures suggesting an opportunity for the FLUXNET community to share strategies to increase measurement availability at the tails of the temperature distribution. We also highlight a wide discrepancy between the measurement ratios across FLUXNET sites that is not related to the actual temperature or rainfall regimes at the site, which we cannot explain. Our analysis provides guidance to help select eddy covariance sites for researchers interested in exploring responses to temperature extremes.


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2020 ◽  
Vol 77 (9) ◽  
pp. 3211-3225
Author(s):  
Kristine F. Haualand ◽  
Thomas Spengler

Abstract The convoluted role of surface sensible and latent heat fluxes on moist baroclinic development demands a better understanding to disentangle their local and remote effects. Including diabatic effects in the Eady model, the direct effects of surface fluxes on the diabatic generation of eddy available potential energy as well as their indirect effects through modifications of the circulation and latent heating are investigated. It is shown that surface sensible heat fluxes have a minor impact, irrespective of their position and parameterization, while latent heating in the region equivalent to the warm conveyor belt is the dominant diabatic source for development. Downward surface sensible heat fluxes in proximity of the warm conveyor belt results in structural modifications that increase the conversion from basic-state available potential energy to eddy available potential energy, while concomitantly weakening the ascent and hence latent heating. The detrimental effects are easily compensated through provision of additional moisture into the warm conveyor belt. Upward surface heat fluxes in the cold sector, on the other hand, are detrimental to growth. When downward (upward) surface sensible heat fluxes are located below the equivalent of the warm conveyor belt, the diabatically induced PV anomaly at the bottom of the latent heating layer becomes dominant (less dominant). Shifting the downward surface sensible heat fluxes away from the warm conveyor belt results in substantial changes in the growth rate, latent heat release, low-level structure, and energetics, where the effect of surface sensible heat fluxes might even be beneficial.


Sign in / Sign up

Export Citation Format

Share Document