scholarly journals A Budget Equation for the Amplitude of Rossby Wave Packets Based on Finite-Amplitude Local Wave Activity

2019 ◽  
Vol 77 (1) ◽  
pp. 277-296
Author(s):  
Paolo Ghinassi ◽  
Marlene Baumgart ◽  
Franziska Teubler ◽  
Michael Riemer ◽  
Volkmar Wirth

Abstract Recently, the authors proposed a novel diagnostic to quantify the amplitude of Rossby wave packets. This diagnostic extends the local finite-amplitude wave activity (LWA) of N. Nakamura and collaborators to the primitive-equations framework and combines it with a zonal filter to remove the phase dependence. In the present work, this diagnostic is used to investigate the dynamics of upper-tropospheric Rossby wave packets, with a particular focus on distinguishing between conservative dynamics and nonconservative processes. For this purpose, a budget equation for filtered LWA is derived and its utility is tested in a hierarchy of models. Idealized simulations with a barotropic and a dry primitive-equation model confirm the ability of the LWA diagnostic to identify nonconservative local sources or sinks of wave activity. In addition, the LWA budget is applied to forecast data for an episode in which the amplitude of an upper-tropospheric Rossby wave packet was poorly represented. The analysis attributes deficiencies in the Rossby wave packet amplitude to the misrepresentation of diabatic processes and illuminates the importance of the upper-level divergent outflow as a source for the error in the wave packet amplitude.

2018 ◽  
Vol 146 (12) ◽  
pp. 4099-4114 ◽  
Author(s):  
Paolo Ghinassi ◽  
Georgios Fragkoulidis ◽  
Volkmar Wirth

AbstractUpper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.


2017 ◽  
Vol 145 (8) ◽  
pp. 3247-3264 ◽  
Author(s):  
Gabriel Wolf ◽  
Volkmar Wirth

It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.


2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2015 ◽  
Vol 143 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Gabriel Wolf ◽  
Volkmar Wirth

Abstract Upper-tropospheric Rossby wave packets have received increased attention recently. In most previous studies wave packets have been detected by computing the envelope of the meridional wind field using either complex demodulation or a Hilbert transform. The latter requires fewer choices to be made and appears, therefore, preferable. However, the Hilbert transform is fraught with a significant problem, namely, a tendency that fragments a single wave packet into several parts. The problem arises because Rossby wave packets show substantial deviations from the almost-plane wave paradigm, a feature that is well represented by semigeostrophic dynamics. As a consequence, higher harmonics interfere with the reconstruction of the wave envelope leading to undesirable wiggles. A possible cure lies in additional smoothing (e.g., by means of a filter) or resorting to complex demodulation (which implies smoothing, too). Another possibility, which does not imply any smoothing, lies in applying the Hilbert transform in semigeostrophic coordinate space. It turns out beneficial to exclude planetary-scale wavenumbers from this transformation in order to avoid problems in cases when the wave packet travels on a low wavenumber quasi-stationary background flow.


2016 ◽  
Vol 73 (3) ◽  
pp. 1063-1081 ◽  
Author(s):  
Franziska Teubler ◽  
Michael Riemer

Abstract Rossby wave packets (RWPs) have been associated with increased atmospheric predictability but also with the growth and propagation of forecast uncertainty. To address the important question of under which conditions RWPs imply high and low predictability, a potential vorticity–potential temperature (PV–θ) framework is introduced to diagnose RWP dynamics. Finite-amplitude RWPs along the midlatitude waveguide are considered and are represented by the synoptic-scale, wavelike undulations of the tropopause. The evolution of RWPs is examined by the amplitude evolution of the individual troughs and ridges. Troughs and ridges are identified as PV anomalies on θ levels intersecting the midlatitude tropopause. By partitioning the PV-tendency equation, individual contributions to the amplitude evolution are identified. A novel aspect is that the important role of the divergent flow and the diabatic PV modification is quantified explicitly. Arguably, prominent upper-tropospheric divergent flow is associated to a large extent with latent-heat release below and can thus be considered as an indirect diabatic impact. A case study of an RWP evolution over 7 days illustrates the PV–θ diagnostic. In general, baroclinic coupling and, important, the divergent flow make contributions to the amplitude evolution of individual troughs and ridges that are comparable in magnitude to the wave’s group propagation. Diabatic PV modification makes a subordinate contribution to the evolution. The relative importance of the different processes exhibits considerable variability between individual troughs and ridges. A discussion of the results in light of recent studies on forecast errors and predictability concludes the paper.


2020 ◽  
Vol 77 (12) ◽  
pp. 4025-4049
Author(s):  
Dehai Luo ◽  
Wenqi Zhang

AbstractIn this paper, a nonlinear multiscale interaction model is used to examine how the planetary waves associated with eddy-driven blocking wave packets propagate through the troposphere in vertically varying weak baroclinic basic westerly winds (BWWs). Using this model, a new one-dimensional finite-amplitude local wave activity flux (WAF) is formulated, which consists of linear WAF related to linear group velocity and local eddy-induced WAF related to the modulus amplitude of blocking envelope amplitude and its zonal nonuniform phase. It is found that the local eddy-induced WAF reduces the divergence (convergence) of linear WAF in the blocking upstream (downstream) side to favor blocking during the blocking growth phase. But during the blocking decay phase, enhanced WAF convergence occurs in the blocking downstream region and in the upper troposphere when BWW is stronger in the upper troposphere than in the lower troposphere, which leads to enhanced upward-propagating tropospheric wave activity, though the linear WAF plays a major role. In contrast, the downward propagation of planetary waves may be seen in the troposphere for vertically decreased BWWs. These are not seen for a zonally uniform eddy forcing. A perturbed inverse scattering transform method is used to solve the blocking envelope amplitude equation. It is found that the finite-amplitude WAF represents a modified group velocity related to the variations of blocking soliton amplitude and zonal wavenumber caused by local eddy forcing. Using this amplitude equation solution, it is revealed that, under local eddy forcing, the blocking wave packet tends to be nearly nondispersive during its growth phase but strongly dispersive during the decay phase for vertically increased BWWs, leading to strong eastward and upward propagation of planetary waves in the downstream troposphere.


2010 ◽  
Vol 23 (8) ◽  
pp. 2115-2130 ◽  
Author(s):  
Takafumi Miyasaka ◽  
Hisashi Nakamura

Abstract The three-dimensional structure and dynamics of the climatological-mean summertime subtropical anticyclones in the Southern Hemisphere (SH) are investigated. As in the Northern Hemisphere (NH), each of the surface subtropical anticyclones over the South Pacific, South Atlantic, and South Indian Oceans is accompanied by a meridional vorticity dipole aloft, exhibiting barotropic and baroclinic structures in its poleward and equatorward portions, respectively, in a manner that is dynamically consistent with the observed midtropospheric subsidence. Their dynamics are also similar to their NH counterpart. It is demonstrated through the numerical experiments presented here that each of the SH surface anticyclones observed over the relatively cool eastern oceans can be reproduced as a response to a local near-surface cooling–heating couplet. The cooling is mainly due to radiative cooling associated with low-level maritime clouds, and the heating to the east is due to sensible heat flux over the dry, heated continental surface. The low-level clouds act to maintain the coolness of the underlying ocean surface, which is also maintained by the alongshore surface southerlies. As in the NH, the presence of a local atmosphere–ocean–land feedback loop is thus suggested, in which the summertime subtropical anticyclones and continental cyclones to their east are involved. Both the model experiments conducted here and the diagnosed upward flux of Rossby wave activity suggest that, in addition to continental deep convective heating, the land–sea heating–cooling contrasts across the west coasts of the three continents can contribute to the formation of the summertime upper-level planetary wave pattern observed in the entire subtropical SH, characterized by the zonal wavenumber-3 component. Though rather subtle, there are some interhemispheric differences in the summertime subtropical anticyclones, including their smaller magnitudes in the SH and the stronger equatorward propagation of upper-level Rossby wave activity emanating from the SH surface anticyclones.


2015 ◽  
Vol 73 (1) ◽  
pp. 211-229 ◽  
Author(s):  
Clare S. Y. Huang ◽  
Noboru Nakamura

Abstract Finite-amplitude Rossby wave activity (FAWA) proposed by Nakamura and Zhu measures the waviness of quasigeostrophic potential vorticity (PV) contours and the associated modification of the zonal-mean zonal circulation, but it does not distinguish longitudinally localized weather anomalies, such as atmospheric blocking. In this article, FAWA is generalized to local wave activity (LWA) to diagnose eddy–mean flow interaction on the regional scale. LWA quantifies longitude-by-longitude contributions to FAWA following the meridional displacement of PV from the circle of equivalent latitude. The zonal average of LWA recovers FAWA. The budget of LWA is governed by the zonal advection of LWA and the radiation stress of Rossby waves. The utility of the diagnostic is tested with a barotropic vorticity equation on a sphere and meteorological reanalysis data. Compared with the previously derived Eulerian impulse-Casimir wave activity, LWA tends to be less filamentary and emphasizes large isolated vortices involving reversals of meridional gradient of potential vorticity. A pronounced Northern Hemisphere blocking episode in late October 2012 is well captured by a high-amplitude, near-stationary LWA. These analyses reveal that the nonacceleration relation holds approximately over regional scales: the growth of phase-averaged LWA and the deceleration of local zonal wind are highly correlated. However, marked departure from the exact nonacceleration relation is also observed during the analyzed blocking event, suggesting that the contributions from nonadiabatic processes to the blocking development are significant.


1974 ◽  
Vol 12 (3) ◽  
pp. 487-500 ◽  
Author(s):  
Magne S. Espedal

We present a procedure to solve the Vlasov–Poisson equations for electrostatic wave packets. We obtain a Schrödinger type of wave equation, taking the wave– particle interaction into account. We use this equation to study the propagation of one finite-amplitude wave packet. We find a change in amplitude caused by interaction between the packet and particles propagating near to the group velocity. Also, we find a modulation of the plasma in the front of the packet, caused by trapping effects.


2005 ◽  
Vol 133 (7) ◽  
pp. 1998-2015 ◽  
Author(s):  
Edmund K. M. Chang

Abstract In this paper, ECMWF 40-yr reanalysis data have been examined to study the influence of upper-level wave packets propagating across Asia into the Pacific on surface cyclone development over the Pacific. Previous studies have shown that in winter, wave packets propagate across Asia over two branches—a northern branch over Siberia and a southern branch along the subtropical jet across southern Asia. Results presented here show that subsequent to the presence of wave packets on either branch, the frequency of occurrence of deep cyclones (defined as cyclones with central pressure below 960 hPa), as well as explosively deepening cyclones (those with a deepening rate of 1 Bergeron or more), are significantly enhanced. This enhancement also clearly follows the wave packet eastward as it propagates across the Pacific. Wave packets from the two branches are found to interfere with each other, such that if wave packets of the appropriate configuration are present on both the northern and southern branch, subsequent surface cyclone development over the western Pacific is further enhanced. Examination of the evolution of the anomalies suggests that these interferences can largely be explained by linear superposition of wave packets from the two branches. Examination of the evolution of the composite structure of wave packets that are followed by the development of a significant surface cyclone indicates that cyclones that develop as the northern packet propagates into the Pacific are phase locked with the upper-level trough and maintain a favorable westward tilt with height throughout their development, consistent with the hypothesis that cyclogenesis is triggered by the approach of the wave packet. In contrast, significant cyclones whose development are influenced by the southern packets initially develop west of the upper-level trough, and propagate eastward with a phase speed that is much faster than that of the upper-level trough, attaining a westward phase tilt with height only at the mature stage, suggesting that cyclogenesis for these cases is probably not triggered by the wave packet.


Sign in / Sign up

Export Citation Format

Share Document