scholarly journals Environment and Mechanisms of Severe Turbulence in a Midlatitude Cyclone

2020 ◽  
Vol 77 (11) ◽  
pp. 3869-3889 ◽  
Author(s):  
Stanley B. Trier ◽  
Robert D. Sharman ◽  
Domingo Muñoz-Esparza ◽  
Todd P. Lane

AbstractA large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370 m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of ~100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5–10-km horizontal wavelengths occurred within layers of gradient Richardson number < 0.25, which promoted Kelvin–Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.

2018 ◽  
Vol 146 (9) ◽  
pp. 3031-3052 ◽  
Author(s):  
Stanley B. Trier ◽  
Robert D. Sharman

Abstract Geostationary Operational Environmental Satellite-14 (GOES-14) 1-km visible satellite data with 1-min frequency revealed horizontally propagating internal gravity waves emanating from tropopause-penetrating deep convection on 3–4 June 2015 during the Plains Elevated Convection at Night (PECAN) field experiment. These waves had horizontal wavelengths of ~6–8 km and approximate ground-relative phase speeds of 35 m s−1. PECAN radiosonde data are used to document the environment supporting the horizontally propagating gravity waves within the 200-km-long downstream thunderstorm anvil. Comparisons among soundings within the anvil core, at the downstream anvil edge, and outside of the anvil, together with supporting high-resolution numerical simulations, establish the importance of the storm-induced upper-tropospheric/lower-stratospheric (UTLS) outflow in providing conditions allowing vertical trapping of internal gravity waves over large horizontal distances within the mesoscale anvil. Turbulence was reported by commercial aviation in proximity to the gravity waves near the downstream anvil edge. The simulations suggest that the strongest turbulence was consistent with a mesoscale destabilization of the outer portion of the downstream anvil at elevations immediately below the outflow jet, where differential temperature advection owing to the strong associated vertical shear reduces static stability. The simulated gravity waves are trapped at this elevation and extend for several kilometers below. Local minima of moist gradient Richardson number occur immediately above the simulated warm gravity wave temperature perturbations at anvil base, suggesting a possible role these waves could play in establishing precise locations for the onset of turbulence.


2009 ◽  
Vol 66 (9) ◽  
pp. 2780-2795 ◽  
Author(s):  
Michael L. Waite ◽  
Boualem Khouider

Abstract A simplified model of intermediate complexity for convectively coupled gravity waves that incorporates the bulk dynamics of the atmospheric boundary layer is developed and analyzed. The model comprises equations for velocity, potential temperature, and moist entropy in the boundary layer as well as equations for the free tropospheric barotropic (vertically uniform) velocity and first two baroclinic modes of vertical structure. It is based on the multicloud model of Khouider and Majda coupled to the bulk boundary layer–shallow cumulus model of Stevens. The original multicloud model has a purely thermodynamic boundary layer and no barotropic velocity mode. Here, boundary layer horizontal velocity divergence is matched with barotropic convergence in the free troposphere and yields environmental downdrafts. Both environmental and convective downdrafts act to transport dry midtropospheric air into the boundary layer. Basic states in radiative–convective equilibrium are found and are shown to be consistent with observations of boundary layer and free troposphere climatology. The linear stability of these basic states, in the case without rotation, is then analyzed for a variety of tropospheric regimes. The inclusion of boundary layer dynamics—specifically, environmental downdrafts and entrainment of free tropospheric air—enhances the instability of both the synoptic-scale moist gravity waves and nonpropagating congestus modes in the multicloud model. The congestus mode has a preferred synoptic-scale wavelength, which is absent when a purely thermodynamic boundary layer is employed. The weak destabilization of a fast mesoscale wave, with a phase speed of 26 m s−1 and coupling to deep convection, is also discussed.


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


2015 ◽  
Vol 33 (12) ◽  
pp. 1479-1484 ◽  
Author(s):  
Y. Tomikawa

Abstract. A new method of obtaining power spectral distribution of gravity waves as a function of ground-based horizontal phase speed and propagation direction from airglow observations has recently been proposed. To explain gravity wave power spectrum anisotropy, a new gravity wave transmission diagram was developed in this study. Gravity wave transmissivity depends on the existence of critical and turning levels for waves that are determined by background horizontal wind distributions. Gravity wave transmission diagrams for different horizontal wavelengths in simple background horizontal winds with constant vertical shear indicate that the effects of the turning level reflection are significant and strongly dependent on the horizontal wavelength.


2009 ◽  
Vol 48 (3) ◽  
pp. 553-579 ◽  
Author(s):  
Chenjie Huang ◽  
Y-L. Lin ◽  
M. L. Kaplan ◽  
J. J. Charney

Abstract This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations, specifically the high pressure ridge and the upper-level jet streak, which leads to meso-α-scale subsidence in its exit region, and the mesoscale forcing that is simulated by the numerical model, specifically the wave breaking and turbulence as well as the wave-induced critical level, which leads to severe downslope (Santa Ana) winds. Two surges of dry air were found to reach the surface in southern California as revealed in the numerical simulation. The first dry air surge arrived as a result of moisture divergence and isallobaric adjustments behind a surface cold front. The second dry air surge reached southern California as the meso-α- to meso-β-scale subsidence and the wave-induced critical level over the coastal ranges phased to transport the dry air from the upper-level jet streak exit region toward the surface and mix the dry air down to the planetary boundary layer on the lee side of the coastal ranges in southern California. The wave-breaking region on the lee side acted as an internal boundary to reflect the mountain wave energy back to the ground and created severe downslope winds through partial resonance with the upward-propagating mountain waves.


2012 ◽  
Vol 140 (8) ◽  
pp. 2477-2496 ◽  
Author(s):  
Stanley B. Trier ◽  
Robert D. Sharman ◽  
Todd P. Lane

Abstract The 9–10 March 2006 aviation turbulence outbreak over the central United States is examined using observations and numerical simulations. Though the turbulence occurs within a deep synoptic cyclone with widespread precipitation, comparison of reports from commercial aircraft with radar and satellite data reveals the majority of the turbulence to be in clear air. This clear-air turbulence (CAT) is located above a strong upper-level jet, where vertical shear ranged between 20 and 30 m s−1 km−1. Comparison of a moist simulation with a dry simulation reveals that simulated vertical shear and subgrid turbulence kinetic energy is significantly enhanced by the anticyclonic upper-level flow perturbation associated with the organized convection in regions of observed CAT. A higher-resolution simulation is used to examine turbulence mechanisms in two primary clusters of reported moderate and severe turbulence. In the northern cluster where vertical shear is strongest, the simulated turbulence arises from Kelvin–Helmholtz (KH) instability. The turbulence farther south occurs several kilometers above shallow, but vigorous, moist convection. There, the simulated turbulence is influenced by vertically propagating gravity waves initiated when the convection impinges on a lowered tropopause. In some locations these gravity waves amplify and break leading directly to turbulence, while in others they aid turbulence development by helping excite KH instability within the layers of strongest vertical shear above them. Although both clusters of turbulence occur either above or laterally displaced from cloud, a shared characteristic is their owed existence to moist convection within the wintertime cyclone, which distinguishes them from traditional CAT.


2010 ◽  
Vol 67 (3) ◽  
pp. 694-712 ◽  
Author(s):  
Ji-Young Han ◽  
Jong-Jin Baik

Abstract Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.


2009 ◽  
Vol 66 (11) ◽  
pp. 3401-3418 ◽  
Author(s):  
Patrick A. Reinecke ◽  
Dale R. Durran

Abstract The sensitivity of downslope wind forecasts to small changes in initial conditions is explored by using 70-member ensemble simulations of two prototypical windstorms observed during the Terrain-Induced Rotor Experiment (T-REX). The 10 weakest and 10 strongest ensemble members are composited and compared for each event. In the first case, the 6-h ensemble-mean forecast shows a large-amplitude breaking mountain wave and severe downslope winds. Nevertheless, the forecasts are very sensitive to the initial conditions because the difference in the downslope wind speeds predicted by the strong- and weak-member composites grows to larger than 28 m s−1 over the 6-h forecast. The structure of the synoptic-scale flow one hour prior to the windstorm and during the windstorm is very similar in both the weak- and strong-member composites. Wave breaking is not a significant factor in the second case, in which the strong winds are generated by a layer of high static stability flowing beneath a layer of weaker mid- and upper-tropospheric stability. In this case, the sensitivity to initial conditions is weaker but still significant. The difference in downslope wind speeds between the weak- and strong-member composites grows to 22 m s−1 over 12 h. During and one hour before the windstorm, the synoptic-scale flow exhibits appreciable differences between the strong- and weak-member composites. Although this case appears to be more predictable than the wave-breaking event, neither case suggests that much confidence should be placed in the intensity of downslope winds forecast 12 or more hours in advance.


2020 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Mark Schlutow ◽  
Georg S. Voelker

Abstract We investigate strongly nonlinear stationary gravity waves which experience refraction due to a thin vertical shear layer of horizontal background wind. The velocity amplitude of the waves is of the same order of magnitude as the background flow and hence the self-induced mean flow alters the modulation properties to leading order. In this theoretical study, we show that the stability of such a refracted wave depends on the classical modulation stability criterion for each individual layer, above and below the shearing. Additionally, the stability is conditioned by novel instability criteria providing bounds on the mean-flow horizontal wind and the amplitude of the wave. A necessary condition for instability is that the mean-flow horizontal wind in the upper layer is stronger than the wind in the lower layer.


2018 ◽  
Vol 18 (9) ◽  
pp. 6721-6732 ◽  
Author(s):  
Gunter Stober ◽  
Svenja Sommer ◽  
Carsten Schult ◽  
Ralph Latteck ◽  
Jorge L. Chau

Abstract. We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin–Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s−1 with intrinsic periods of 5–10 min.


Sign in / Sign up

Export Citation Format

Share Document