Marine boundary layers above heterogeneous SST: Along-front winds

Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams ◽  
Jeffrey C. Weil ◽  
Edward G. Patton ◽  
Harindra J. S. Fernando

AbstractTurbulent flow in a weakly convective marine atmospheric boundary layer (MABL) driven by geostrophic winds Vg = 10ms−1 and heterogeneous sea surface temperature (SST) is examined using fine mesh large eddy simulation (LES). The imposed SST heterogeneity is a single-sided warm or cold front with jumps Δθ = (2, −1.5)K varying over a horizontal x distance of 1 km characteristic of an upper ocean mesoscale or submesoscale front. The geostrophic winds are oriented parallel to the SST isotherms, i.e., the winds are along-front. Previously, Sullivan et al. (2020) examined a similar flow configuration but with geostrophic winds oriented perpendicular to the imposed SST isotherms, i.e., the winds were across-front. Results with along-front and across-front winds differ in important ways. With along-front winds the ageostrophic surface wind is weak, about 5 times smaller than the geostrophic wind, and horizontal pressure gradients couple the SST front and the atmosphere in the momentum budget. With across-front winds horizontal pressure gradients are weak and mean horizontal advection primarily balances vertical flux divergence. Along-front winds generate persistent secondary circulations (SC) that modify the surface fluxes as well as turbulent fluxes in the MABL interior depending on the sign of Δθ. Warm and cold filaments develop opposing pairs of SC with a central upwelling or downwelling region between the cells. Cold filaments reduce the entrainment near the boundary-layer top which can potentially impact cloud initiation. The surface-wind SST-isotherm orientation is an important component of atmosphere-ocean coupling. The results also show frontogenetic tendencies in the MABL.

2014 ◽  
Vol 142 (11) ◽  
pp. 3955-3976 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski ◽  
Yvette P. Richardson ◽  
George H. Bryan

Abstract Nearly all previous numerical simulations of supercell thunderstorms have neglected surface fluxes of heat, moisture, and momentum. This choice precludes horizontal inhomogeneities associated with dry boundary layer convection in the near-storm environment. As part of a broader study on how mature supercell thunderstorms are affected by a convective boundary layer (CBL) with quasi-two-dimensional features (i.e., boundary layer rolls), this paper documents the methods used to develop a realistic CBL in an idealized environment supportive of supercells. The evolution and characteristics of the modeled CBL, including the horizontal variability of thermodynamic and kinematic quantities known to affect supercell evolution, are presented. The simulated rolls result in periodic bands of perturbations in temperature, moisture, convective available potential energy (CAPE), vertical wind shear, and storm-relative helicity (SRH). Vertical vorticity is shown to arise within the boundary layer through the tilting of ambient horizontal vorticity associated with the background shear by vertical velocity perturbations in the turbulent CBL. Sensitivity tests suggest that 200-m horizontal grid spacing is adequate to represent rolls using a large-eddy simulation (LES) approach.


2010 ◽  
Vol 67 (12) ◽  
pp. 3835-3853 ◽  
Author(s):  
David B. Mechem ◽  
Yefim L. Kogan ◽  
David M. Schultz

Abstract Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms. Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment.


2015 ◽  
Vol 72 (8) ◽  
pp. 3178-3198 ◽  
Author(s):  
Adam H. Monahan ◽  
Tim Rees ◽  
Yanping He ◽  
Norman McFarlane

Abstract A long time series of temporally high-resolution wind and potential temperature data from the 213-m tower at Cabauw in the Netherlands demonstrates the existence of two distinct regimes of the stably stratified nocturnal boundary layer at this location. Hidden Markov model (HMM) analysis is used to objectively characterize these regimes and classify individual observed states. The first regime is characterized by strongly stable stratification, large wind speed differences between 10 and 200 m, and relatively weak turbulence. The second is associated with near-neutral stratification, weaker wind speed differences between 10 and 200 m, and relatively strong turbulence. In this second regime, the state of the boundary layer is similar to that during the day. The occupation statistics of these regimes are shown to covary with the large-scale pressure gradient force and cloud cover such that the first regime predominates under clear skies with weak geostrophic wind speed and the second regime predominates under conditions of extensive cloud cover or large geostrophic wind speed. These regimes are not distinguished by standard measures of stability, such as the Obukhov length or the bulk Richardson number. Evidence is presented that the mechanism generating these distinct regimes is associated with a previously documented feedback resulting from the existence of an upper limit on the maximum downward heat flux that can be sustained for a given near-surface wind speed.


2020 ◽  
Vol 77 (12) ◽  
pp. 4251-4275 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams ◽  
Jeffrey C. Weil ◽  
Edward G. Patton ◽  
Harindra J. S. Fernando

AbstractTurbulent flow in a weakly convective marine atmospheric boundary layer (MABL) driven by geostrophic winds Ug = 10 m s−1 and heterogeneous sea surface temperature (SST) is examined using fine-mesh large-eddy simulation (LES). The imposed SST heterogeneity is a single-sided warm or cold front with temperature jumps Δθ = (2, −1.5) K varying over a horizontal distance between [0.1, −6] km characteristic of an upper-ocean mesoscale or submesoscale regime. A Fourier-fringe technique is implemented in the LES to overcome the assumptions of horizontally homogeneous periodic flow. Grid meshes of 2.2 × 109 points with fine-resolution (horizontal, vertical) spacing (δx = δy, δz) = (4.4, 2) m are used. Geostrophic winds blowing across SST isotherms generate secondary circulations that vary with the sign of the front. Warm fronts feature overshoots in the temperature field, nonlinear temperature and momentum fluxes, a local maximum in the vertical velocity variance, and an extended spatial evolution of the boundary layer with increasing distance from the SST front. Cold fronts collapse the incoming turbulence but leave behind residual motions above the boundary layer. In the case of a warm front, the internal boundary layer grows with downstream distance conveying the surface changes aloft and downwind. SST fronts modify entrainment fluxes and generate persistent horizontal advection at large distances from the front.


2009 ◽  
Vol 66 (10) ◽  
pp. 3147-3164 ◽  
Author(s):  
Craig M. Smith ◽  
Eric D. Skyllingstad

Abstract Interactions between a turbulent boundary layer and nonlinear mountain waves are explored using a large-eddy simulation model. Simulations of a self-induced critical layer, which develop a stagnation layer and a strong leeside surface jet, are considered. Over time, wave breaking in the stagnation region forces strong turbulence that influences the formation and structure of downstream leeside rotors. Shear production is an important source of turbulence in the stagnation zone and along the interface between the stagnation zone and surface jet, as well as along the rotor edges. Buoyancy perturbations act as a source of turbulence in the stagnation zone but are shown to inhibit turbulence generation on the edges of the stagnation zone. Surface heating is shown to have a strong influence on the strength of downslope winds and the formation of leeside rotors. In cases with no heating, a series of rotor circulations develops, capped by a region of increased winds. Weak heating disrupts this system and limits rotor formation at the base of the downslope jet. Strong heating has a much larger impact through a deepening of the upstream boundary layer and an overall decrease in the downslope winds. Rotors in this case are nonexistent. In contrast to the cases with surface warming, negative surface fluxes generate stronger downslope winds and intensified rotors due to turbulent interactions with an elevated stratified jet capping the rotors. Overall, the results suggest that for nonlinear wave systems over mountains higher than the boundary layer, strong downslope winds and rotors are favored in late afternoon and evening when surface cooling enhances the stability of the low-level air.


2005 ◽  
Vol 18 (5) ◽  
pp. 737-753 ◽  
Author(s):  
Hollis E. Pyatt ◽  
Bruce A. Albrecht ◽  
Chris Fairall ◽  
J. E. Hare ◽  
Nicholas Bond ◽  
...  

Abstract The structure of the marine atmospheric boundary layer (MABL) over the tropical eastern Pacific Ocean is influenced by spatial variations of sea surface temperature (SST) in the region. As the MABL air is advected across a strong SST gradient associated with the cold tongue–ITCZ complex (CTIC), substantial changes occur in the thermodynamic structure, surface fluxes, and cloud properties. This study attempts to define and explain the variability in the MABL structure and clouds over the CTIC. Using data collected on research cruises from the fall seasons of 1999–2001, composite soundings were created for both the cold and warm sides of the SST front to describe the mean atmospheric boundary layer (ABL) structure and its evolution across this front. The average difference in SST across this front was ∼6°C; much of this difference was concentrated in a band only ∼50 km wide. During the fall seasons, on the cold side of the gradient, a well-defined inversion exists in all years. Below this inversion, both fair-weather cumulus and stratiform clouds are observed. As the MABL air moves over the SST front to warmer waters, the inversion weakens and increases in height. The MABL also moistens and eventually supports deeper convection over the ITCZ. Both the latent and sensible heat fluxes increase dramatically across the SST front because of both an increase in SST and surface wind speed. Cloudiness is variable on the cold side of the SST front ranging from 0.2 to 0.9 coverage. On the warm side, cloud fraction was quite constant in time, with values generally greater than 0.8. The highest cloud-top heights (>3 km) are found well north of the SST front, indicating areas of deeper convection. An analysis using energy and moisture budgets identifies the roles of various physical processes in the MABL evolution.


1960 ◽  
Vol 13 (3) ◽  
pp. 296-300
Author(s):  
H. M. de Jong

After the radar altimeter came into use at the end of the second world war, the combination with a pressure altimeter made it possible to measure horizontal pressure gradients, which enabled the navigator to estimate the geostrophic wind. The pressure gradient is directly related to the component of the wind at right angles to the track by means of the geostrophic relation and the navigator is thus provided with a method of evaluating one component of the drift. A position line of pressure combined with another position line (Loran, astro, &c.) enables the position of the aircraft to be determined.


2010 ◽  
Vol 23 (3) ◽  
pp. 559-581 ◽  
Author(s):  
Larry W. O’Neill ◽  
Steven K. Esbensen ◽  
Nicolai Thum ◽  
Roger M. Samelson ◽  
Dudley B. Chelton

Abstract The dynamical response of the marine atmospheric boundary layer (MABL) to mesoscale sea surface temperature (SST) perturbations is investigated over the Agulhas Return Current during winter from a 1-month, high-resolution, three-dimensional simulation using the Weather Research and Forecasting (WRF) mesoscale model. A steady lower boundary condition for July 2002 is obtained using SST measurements from the Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS)–Aqua satellite (AMSR-E). The WRF models’ ability to accurately simulate the SST-induced surface wind response is demonstrated from a comparison with satellite surface wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite. Relevant features of this simulation include a quasi-periodic distribution of mesoscale SST perturbations with spatial scales ∼200 km and strong winds that lead to a large surface sensible heat flux response, whose broad range of 80–100 W m−2 between warm and cool SST perturbations is much larger than seen in most previous simulations of mesoscale wind–SST coupling. This simulation provides the first realistic example of vertical turbulent redistribution of momentum driven by the SST-induced surface heating perturbations acting in concert with the SST-induced pressure gradients to accelerate near-surface flow toward warm water and decelerate near-surface flow toward cool water. This simulation is also the first example of a near-surface wind speed response to mesoscale SST perturbations that differs qualitatively and substantially from the vertically averaged MABL wind response. In the vertically averaged MABL momentum budget, the surface wind stress acts as a drag on the SST-induced perturbation flow as it is being accelerated by SST-induced pressure gradients. However, only in the middle and upper reaches of the MABL does the turbulent stress divergence act as a drag on the SST-induced winds perturbations in this simulation. These mesoscale SST perturbations are also shown to modify the wind direction within the MABL. Dynamically, this is accomplished through SST-induced perturbations to the crosswind components of the pressure gradient, turbulent stress divergence, and the Coriolis force.


Sign in / Sign up

Export Citation Format

Share Document