The Radiation Budget of the West African Sahel and Its Controls: A Perspective from Observations and Global Climate Models

2012 ◽  
Vol 25 (17) ◽  
pp. 5976-5996 ◽  
Author(s):  
Mark A. Miller ◽  
Virendra P. Ghate ◽  
Robert K. Zahn

Abstract Continuous measurements of the shortwave (SW), longwave (LW), and net cross-atmosphere radiation flux divergence over the West African Sahel were made during the year 2006 using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and the Geostationary Earth Radiation Budget (GERB) satellite. Accompanying AMF measurements enabled calculations of the LW, SW, and net top of the atmosphere (TOA) and surface cloud radiative forcing (CRF), which quantifies the radiative effects of cloud cover on the column boundaries. Calculations of the LW, SW, and net cloud radiative effect (CRE), which is the difference between the TOA and surface radiative flux divergences in all-sky and clear-sky conditions, quantify the radiative effects on the column itself. These measurements were compared to predictions in four global climate models (GCMs) used in the Intergovernmental Panel for Climate Change Fourth Assessment Report (IPCC AR4). All four GCMs produced wet and dry seasons, but reproducing the SW column radiative flux divergence was problematic in the GCMs and SW discrepancies translated into discrepancies in the net radiative flux divergence. Computing cloud-related quantities from the measurements produced yearly averages of the SW TOA CRF, surface CRF, and CRE of ~−19, −83, and 47 W m−2, respectively, and yearly averages of the LW TOA CRF, surface CRF, and CRE of ~39, 37, and 2 W m−2. These quantities were analyzed in two GCMs and compensating errors in the SW and LW clear-sky, cross-atmosphere radiative flux divergence were found to conspire to produce somewhat reasonable predictions of the net clear-sky divergence. Both GCMs underestimated the surface LW and SW CRF and predicted near-zero SW CRE when the measured values were substantially larger (~70 W m−2 maximum).

2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


2015 ◽  
Vol 28 (23) ◽  
pp. 9298-9312 ◽  
Author(s):  
Kevin M. Grise ◽  
Lorenzo M. Polvani ◽  
John T. Fasullo

Abstract Recent efforts to narrow the spread in equilibrium climate sensitivity (ECS) across global climate models have focused on identifying observationally based constraints, which are rooted in empirical correlations between ECS and biases in the models’ present-day climate. This study reexamines one such constraint identified from CMIP3 models: the linkage between ECS and net top-of-the-atmosphere radiation biases in the Southern Hemisphere (SH). As previously documented, the intermodel spread in the ECS of CMIP3 models is linked to present-day cloud and net radiation biases over the midlatitude Southern Ocean, where higher cloud fraction in the present-day climate is associated with larger values of ECS. However, in this study, no physical explanation is found to support this relationship. Furthermore, it is shown here that this relationship disappears in CMIP5 models and is unique to a subset of CMIP models characterized by unrealistically bright present-day clouds in the SH subtropics. In view of this evidence, Southern Ocean cloud and net radiation biases appear inappropriate for providing observationally based constraints on ECS. Instead of the Southern Ocean, this study points to the stratocumulus-to-cumulus transition regions of the SH subtropical oceans as key to explaining the intermodel spread in the ECS of both CMIP3 and CMIP5 models. In these regions, ECS is linked to present-day cloud and net radiation biases with a plausible physical mechanism: models with brighter subtropical clouds in the present-day climate show greater ECS because 1) subtropical clouds dissipate with increasing CO2 concentrations in many models and 2) the dissipation of brighter clouds contributes to greater solar warming of the surface.


2015 ◽  
Vol 15 (17) ◽  
pp. 9997-10018 ◽  
Author(s):  
J. Xing ◽  
R. Mathur ◽  
J. Pleim ◽  
C. Hogrefe ◽  
C.-M. Gan ◽  
...  

Abstract. The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA are comparable with those derived by measurements. Compared to global climate models (GCMs), the model exhibits better estimates of surface-aerosol direct radiative efficiency (Eτ). However, surface-DRE tends to be underestimated due to the underestimated AOD in land and dust regions. Further investigation of TOA-Eτ estimations as well as the dust module used for estimates of windblown-dust emissions is needed.


2017 ◽  
Vol 30 (8) ◽  
pp. 2867-2884 ◽  
Author(s):  
Ross D. Dixon ◽  
Anne Sophie Daloz ◽  
Daniel J. Vimont ◽  
Michela Biasutti

Representing the West African monsoon (WAM) is a major challenge in climate modeling because of the complex interaction between local and large-scale mechanisms. This study focuses on the representation of a key aspect of West African climate, namely the Saharan heat low (SHL), in 22 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel dataset. Comparison of the CMIP5 simulations with reanalyses shows large biases in the strength and location of the mean SHL. CMIP5 models tend to develop weaker climatological heat lows than the reanalyses and place them too far southwest. Models that place the climatological heat low farther to the north produce more mean precipitation across the Sahel, while models that place the heat low farther to the east produce stronger African easterly wave (AEW) activity. These mean-state biases are seen in model ensembles with both coupled and fixed sea surface temperatures (SSTs). The importance of SSTs on West African climate variability is well documented, but this research suggests SSTs are secondary to atmospheric biases for understanding the climatological SHL bias. SHL biases are correlated across the models to local radiative terms, large-scale tropical precipitation, and large-scale pressure and wind across the Atlantic, suggesting that local mechanisms that control the SHL may be connected to climate model biases at a much larger scale.


2019 ◽  
Author(s):  
Martin de Graaf ◽  
Ruben Schulte ◽  
Fanny Peers ◽  
Fabien Waquet ◽  
L. Gijsbert Tilstra ◽  
...  

Abstract. The Direct Radiative Effect (DRE) of aerosols above clouds has been found to be significant over the south-east Atlantic Ocean during the African biomass burning season due to elevated smoke layers absorbing radiation above the cloud deck. So far, global climate models have been unsuccessful in reproducing the high DRE values measured by various satellite instruments. Meanwhile, the radiative effects by aerosols have been identified as the largest source of uncertainty in global climate models. In this paper, three independent satellite datasets of DRE during the biomass burning season in 2006 are compared to constrain the south-east Atlantic radiation budget. The DRE of aerosols above clouds is derived from the spectrometer SCIAMACHY, the polarimeter POLDER, and from collocated measurements by the spectrometer OMI and imager MODIS. All three confirm the high DRE values during the biomass season, underlining the relevance of local aerosol effects. Differences between the instruments can be attributed mainly to sampling issues. When these are accounted for, the remaining differences can be completely explained by the higher cloud optical thickness derived from POLDER compared to the other instruments. Additionally, a neglect of AOT at SWIR wavelengths in the method used for SCIAMACHY and OMI/MODIS accounts for 26 % of the difference between POLDER and OMI/MODIS DRE.


2021 ◽  
Author(s):  
Boriana Chtirkova ◽  
Doris Folini ◽  
Lucas Ferreira Correa ◽  
Martin Wild

<p>Quantifying trends in surface solar radiation (SSR) of unforced simulations is of substantial importance when one tries to quantify the anthropogenic effect in forced trends, as the net effect may be dampened or amplified by the internal variability of the system. In our analysis, we consider trends on different temporal scales (10, 30, 50 and 100 years) from 58 global climate models, participating in the Coupled Model Intercomparison Project - Phase 6 (CMIP6). We calculate the trends at the grid-box level for all-sky and clear-sky SSR using annual mean data of the multi-century pre-industrial control (piControl) experiments. The trends from both variables are found to depend strongly on the geographical region, as the most pronounced trends of the all-sky variable are observed in the Tropical Pacific, while the largest clear-sky trends are found in the large desert regions. Inspecting for each grid cell the statistical distribution of occurring N-year trends  shows that they are normally distributed in the majority of grid cells for both all-sky and clear-sky SSR. The 75-th percentile taken from these distributions (i.e. a positive trend with a 25 % chance of occurrence) varies with geographical region, taking values in the ranges 0.79 - 12.03 Wm<sup>-2</sup>/decade for 10-year trends, 0.15 - 2.05 Wm<sup>-2</sup>/decade for 30-year trends, 0.07 - 0.92 Wm<sup>-2</sup>/decade for 50-year trends and 0.02 - 0.29 Wm<sup>-2</sup>/decade for 100-year trends for all-sky SSR. The unforced trends become less significant on longer timescales – the trend medians, corresponding to the above ranges, are 3.18 Wm<sup>-2</sup>/decade, 0.62 Wm<sup>-2</sup>/decade, 0.29 Wm<sup>-2</sup>/decade, 0.10 Wm<sup>-2</sup>/decade respectively. The trends for clear-sky SSR are found to differ from the all-sky SSR by a factor of 0.16 on average, independent of the trend length. The model spread becomes greater at longer trend timescales, the differences being more substantial between large model families rather than between individual models. To elucidate the dominant causes of variability in different regions, we examine the correlations of the SSR variables with ambient aerosol optical thickness at 550 nm, atmosphere mass content of water vapour, cloud area fraction and albedo.</p>


2017 ◽  
Vol 30 (5) ◽  
pp. 1665-1687 ◽  
Author(s):  
Lisa Hannak ◽  
Peter Knippertz ◽  
Andreas H. Fink ◽  
Anke Kniffka ◽  
Gregor Pante

Abstract Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5°–10°N, 8°W–8°E) during July–September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has received little attention. Here 30 (20) years of output from 18 (8) models participating in phase 5 of the Coupled Model Intercomparison Project (Year of Tropical Convection) are used to identify cloud biases and their causes. Compared to ERA-Interim reanalyses, many models show large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear because of concomitant effects on temperature and moisture advection as well as turbulent mixing. Part of the differences between the models and ERA-Interim appear to be related to the different subgrid cloud schemes used. While nighttime tendencies in temperature and humidity are broadly realistic in most models, daytime tendencies show large problems with the vertical transport of heat and moisture. Many models simulate too low near-surface relative humidities, leading to insufficient low cloud cover and abundant solar radiation, and thus a too large diurnal cycle in temperature and relative humidity. In the future, targeted model sensitivity experiments will be needed to test possible feedback mechanisms between low clouds, radiation, boundary layer dynamics, precipitation, and the WAM circulation.


2008 ◽  
Vol 47 (4) ◽  
pp. 1199-1221 ◽  
Author(s):  
Alexander P. Trishchenko ◽  
Yi Luo ◽  
Konstantin V. Khlopenkov ◽  
Shusen Wang

Abstract Multispectral surface albedo and bidirectional properties are required for accurate determination of the surface and atmosphere solar radiation budget. A method is developed here to obtain time series of these surface characteristics consistent with the Moderate Resolution Imaging Spectroradiometer (MODIS) using historical satellite observations with limited spectral coverage available from NOAA Advanced Very High Resolution Radiometer (AVHRR) and VEGETATION/Satellite pour l’Observation de la Terre (SPOT). A nonlinear regression model was developed that relates retrievals from four spectral channels of VEGETATION/SPOT or three spectral channels of NOAA AVHRR with retrieval from each of the seven MODIS channels designed for land applications. The model also takes into account the surface land cover type, the normalized difference vegetation index, and the seasonal cycle. It was applied to generate surface albedo and bidirectional parameters of the seven MODIS-like spectral channels at a 10-day interval for the 1995–2004 period over the U.S. southern Great Plains. The relative retrieval accuracy for the MODIS channels replicated from AVHRR or VEGETATION/SPOT data was typically better than 5%. Correlation coefficients between replicated and original data varied from 0.92 to 0.98 for all channels except MODIS channel 5, where it was lower (0.77–0.84). The developed method provides valuable information for parameterization of spectral albedo in global climate models and can be extended to generate global multispectral data compatible with MODIS from historical AVHRR and VEGETATION/SPOT observations for the pre-MODIS era.


2020 ◽  
Author(s):  
Yi Huang ◽  
Yuwei Wang

<p>Global warming is amplified by radiative feedbacks. Compared to the feedback in the troposphere, the feedback in the stratosphere is less understood. The stratospheric water vapor (SWV), one of the primary feedbacks in the stratosphere, is argued to be an important contributor to global warming. This, however, is at odds with the finding that the overall stratospheric feedback does not amount to a significant value in global climate models (GCMs). The key to reconciling these seemingly contradictory arguments is to understand the stratospheric temperature (ST) change since the impact of SWV on the top-of-atmosphere (TOA) radiation budget results more from its cooling of the stratosphere than its direct radiative impact on the TOA radiation. Here, we develop a method to decompose the ST change and to quantify the effects of different climate responses associated with SWV on the TOA radiation budget. We find that although the SWV feedback by itself would lead to strong stratospheric cooling, this cooling is strongly offset by the radiative coupling between the stratosphere and troposphere. Such compensation results in an insignificant overall stratospheric feedback. SWV-locking experiments verify that the SWV feedback does not significantly modify the overall climate sensitivity in the GCM global warming simulations.</p>


Sign in / Sign up

Export Citation Format

Share Document