Terminating the Last Interglacial: The Role of Ice Sheet–Climate Feedbacks in a GCM Asynchronously Coupled to an Ice Sheet Model

2011 ◽  
Vol 25 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
Adam R. Herrington ◽  
Christopher J. Poulsen

Abstract Climatic deterioration in northeastern Canada following the last interglacial resulted in the formation and abrupt expansion of the Laurentide Ice Sheet. However, the physical mechanisms leading to rapid ice sheet expansion are not well understood. Here, the authors report on experiments using an ice sheet model asynchronously coupled to a GCM to investigate the role of ice sheet–climate feedbacks in terminating the last interglacial period. In agreement with simpler models, the experiments indicate that a specific type of ice–albedo feedback, the small ice cap instability, is the dominant process controlling rapid expansion of the Laurentide Ice Sheet. As ice elevations increase in northeastern Canada, a stationary wave forms and strengthens over the Laurentide Ice Sheet, which acts to hinder further expansion of the ice margin and reduce the effect of the small ice cap instability. The sensitivity of these feedbacks to ice topography results in a reduction in simulated ice volume when the communication interval between the GCM and ice sheet model is lengthened since this permits larger gains in ice elevation between GCM updates and biases the simulation toward a stronger stationary wave feedback. The shortest communication interval (500 yr) leads to a Laurentide ice volume of 6 × 106 km3 in 10 kyr, which is less than ice volume estimates based on the geological record but is a substantial improvement over previous GCM studies. The authors discuss potential improvements to the asynchronous coupling scheme that would more accurately resolve ice sheet–climate feedbacks, potentially leading to greater simulated ice volume.

2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


2008 ◽  
Vol 48 ◽  
pp. 177-182 ◽  
Author(s):  
H.C. Steen-Larsen ◽  
D. Dahl-Jensen

AbstractA simple combined heat and ice-sheet model has been used to calculate temperatures at the base of the Laurentide ice sheet. We let the ice sheet surge when the basal temperature reaches the pressure-melting temperature. Driving the system with the observed accumulation and temperature records from the GRIP ice core, Greenland, produces surges corresponding to the observed Heinrich events. This suggests that the mechanism of basal sliding, initiated when the basal temperature reaches the melting point, can explain the surges of the Laurentide ice sheet. This study highlights the importance of the surface temperature and accumulation rate as a means of forcing the timing and strength of the Heinrich events, thus implying important ice-sheet climate feedbacks.


2020 ◽  
Author(s):  
Christopher Halsted ◽  
Jeremy Shakun ◽  
Lee Corbett ◽  
Paul Bierman ◽  
P. Thompson Davis ◽  
...  

<p>In the northeastern United States, there are extensive geochronologic and geomorphic constraints on the deglaciation of the southeastern Laurentide Ice Sheet; thus, it is an ideal area for large-scale ice volume reconstructions and comparison between different ice retreat chronometers. Varve chronologies, lake and bog-bottom radiocarbon ages, and cosmogenic nuclide exposure ages constrain the timing of ice retreat, but the inferred ages exhibit considerable noise and sometimes disagree. Additionally, there are few empirical constraints on ice thinning, forcing ice volume reconstructions to rely on geophysically-based ice thickness models. Here, we aim to improve the understanding of the southeastern Laurentide Ice Sheet recession by (1) adding extensive ice thickness constraints and (2) compiling all available deglacial chronology data in the region to investigate discrepancies between different chronometers.</p><p>To provide insight about ice sheet thinning history, we collected 120 samples for in-situ <sup>10</sup>Be and 10 samples for in-situ <sup>14</sup>C cosmogenic exposure dating from various elevations at 13 mountains in the northeastern United States. By calculating ages of exposure at different elevations across this region, we reconstruct paleo-ice surface lowering of the southeastern Laurentide Ice Sheet during deglaciation. Where we suspect that <sup>10</sup>Be remains from pre-Last Glacial Maximum periods of exposure, in-situ <sup>14</sup>C is used to infer the erosional history and minimum exposure age of samples.</p><p>Presently, we have measured <sup>10</sup>Be in 73 samples. Mountain-top exposure ages located within 150 km of the southeastern Laurentide Ice Sheet terminal moraine indicate that near-margin thinning began early in the deglacial period (~19.5 to 17.5 ka), coincident with the slow initial margin retreat indicated by varve records. Exposure ages from several mountains further inland (>400 km north of terminal moraine) collected over ~1000 m of elevation range record rapid ice thinning between 14.5 and 13 ka. Ages within each of these vertical transects are similar within 1σ internal uncertainty, indicating that ice thinned quickly, less than a few hundred years at most. This rapid thinning occurred at about the same time that varve records indicate accelerated ice margin retreat (14.6–12.9 ka), providing evidence of substantial ice volume loss during the Bølling-Allerød warm period.</p><p>Our critical evaluation of deglacial chronometers, including valley-bottom <sup>10</sup>Be ages from this project, is intended to constrain ice margin retreat rates and timing in the region. Ultimately, we will integrate our ice thickness over time constraints with the existing network of deglacial ages to create a probabilistic reconstructions of the southeastern Laurentide Ice Sheet volume during its recession through the northeastern United States.</p>


2011 ◽  
Vol 31 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Harold W. Borns ◽  
Terence J. Hughes

Much of the Laurentide ice sheet in Maine, Atlantic Provinces, and southern Quebec was a "marine ice sheet," that is it was grounded below the prevailing sea level. When proper conditions prevailed, calving bays progressed into the ice sheet along ice streams partitioning it, leaving those portions grounded above sea level as residual ice caps. At least by 12,800 yrs. BP a calving bay had progressed up the St. Lawrence Lowland at least to Ottawa while a similar, but less extensive calving bay developed in Central Maine at approximately the same time. Concurrently, ice draining north into the St. Lawrence and south into the Central Maine calving bays rapidly lowered the surface of the intervening ice sheet until it eventually divided over the NE-SW trending Boundary and Longfellow Mountains and probably over other highland areas as well. A major consequence of these nearly simultaneous processes was the separation of an initial large ice cap over part of Maine, New Brunswick, and Québec which was bounded on the west by the calving bay in Central Maine, to the north by the calving bay in the St. Lawrence Lowland, to the south by the Bay of Fundy, and to the east by the Gulf of St. Lawrence. In coastal Maine, east of the calving bay, the margin of the ice cap receded above the marine limit at least 40 km and subsequently read-vanced terminating at Pineo Ridge moraine approximately 12,700 yrs. BP. These events are the stratigraphie and chronologic equivalent of the Cary-Pt. Huron recession/Pt. Huron readvance of the Great Lakes region.


2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


2019 ◽  
Author(s):  
Elizabeth G. Ceperley ◽  
◽  
Shaun A. Marcott ◽  
J. Elmo Rawling ◽  
Lucas K. Zoet ◽  
...  
Keyword(s):  

2013 ◽  
Vol 9 (2) ◽  
pp. 621-639 ◽  
Author(s):  
E. J. Stone ◽  
D. J. Lunt ◽  
J. D. Annan ◽  
J. C. Hargreaves

Abstract. During the Last Interglacial period (~ 130–115 thousand years ago) the Arctic climate was warmer than today, and global mean sea level was probably more than 6.6 m higher. However, there are large discrepancies in the estimated contributions to this sea level change from various sources (the Greenland and Antarctic ice sheets and smaller ice caps). Here, we determine probabilistically the likely contribution of Greenland ice sheet melt to Last Interglacial sea level rise, taking into account ice sheet model parametric uncertainty. We perform an ensemble of 500 Glimmer ice sheet model simulations forced with climatologies from the climate model HadCM3, and constrain the results with palaeodata from Greenland ice cores. Our results suggest a 90% probability that Greenland ice melt contributed at least 0.6 m, but less than 10% probability that it exceeded 3.5 m, a value which is lower than several recent estimates. Many of these previous estimates, however, did not include a full general circulation climate model that can capture atmospheric circulation and precipitation changes in response to changes in insolation forcing and orographic height. Our combined modelling and palaeodata approach suggests that the Greenland ice sheet is less sensitive to orbital forcing than previously thought, and it implicates Antarctic melt as providing a substantial contribution to Last Interglacial sea level rise. Future work should assess additional uncertainty due to inclusion of basal sliding and the direct effect of insolation on surface melt. In addition, the effect of uncertainty arising from climate model structural design should be taken into account by performing a multi-climate-model comparison.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Marius Folden Simonsen ◽  
Giovanni Baccolo ◽  
Thomas Blunier ◽  
Alejandra Borunda ◽  
Barbara Delmonte ◽  
...  

Abstract Accurate estimates of the past extent of the Greenland ice sheet provide critical constraints for ice sheet models used to determine Greenland’s response to climate forcing and contribution to global sea level. Here we use a continuous ice core dust record from the Renland ice cap on the east coast of Greenland to constrain the timing of changes to the ice sheet margin and relative sea level over the last glacial cycle. During the Holocene and the previous interglacial period (Eemian) the dust record was dominated by coarse particles consistent with rock samples from central East Greenland. From the coarse particle concentration record we infer the East Greenland ice sheet margin advanced from 113.4 ± 0.4 to 111.0 ± 0.4 ka BP during the glacial onset and retreated from 12.1 ± 0.1 to 9.0 ± 0.1 ka BP during the last deglaciation. These findings constrain the possible response of the Greenland ice sheet to climate forcings.


Sign in / Sign up

Export Citation Format

Share Document