scholarly journals The Low-Frequency Variability of the Southern Ocean Circulation

2013 ◽  
Vol 26 (16) ◽  
pp. 6081-6091 ◽  
Author(s):  
Emanuel Giarolla ◽  
Ricardo P. Matano

Abstract Long time series of sea surface height (SSH), sea surface temperature, and wind stress curl are used to determine the main modes of low-frequency variability of the Southern Ocean (SO) circulation. The dominant mode is a trend of increasing SSH at an average rate of 3.3 mm yr−1. Similar trends have been reported in previous studies and the analysis indicates that the tendency of sea level increase over the SO has become more spatially homogeneous during the last decade, with changes in the increasing rate in 2000 and 2006. The other modes consist of stationary, basin-type modes, and an eastward-propagating wave. The stationary modes are particularly dominant in the Indian and Atlantic Ocean basins, where their spatial structure appears to be shaped by the basin geometry and the bottom topography. The wavelike patterns travel eastward with a period of approximately 10 years. Two waves were identified in the analysis: a complete cycle between 1997 and 2007 and a second cycle starting in 2000. Such waves have rarely been mentioned or identified in studies using recent satellite-derived SSH products.

2011 ◽  
Vol 41 (9) ◽  
pp. 1585-1604 ◽  
Author(s):  
Stefano Pierini

Abstract In this paper, a low-order spectral quasigeostrophic (QG) model of the wind-driven ocean circulation is derived and used to analyze the low-order character of the intrinsic low-frequency variability of the midlatitude double-gyre ocean circulation and of the related coherence resonance and phase selection phenomena. The model includes an exponential in the basis functions that allows for westward intensification, retains only four modes in the Galerkin projection, is defined in a rectangular domain, and is forced by deterministic and stochastic winds, thus extending previous low-order QG ocean models. The solution under steady forcing is first obtained, and the results are also analyzed in terms of dynamical systems theory. A homoclinic bifurcation (with the wind amplitude chosen as the control parameter) leads to intrinsic decadal relaxation oscillations (ROs) similar in several respects to those obtained with primitive equation models. The system is then forced with an additional red noise wind, and, in a parameter range preceding the global bifurcation, a coherence resonance scenario very similar to the one found with a primitive equation model of the Kuroshio Extension is obtained: this suggests that such a phenomenon is of low-order character. To study the RO excitation mechanism, a method denoted as phase selection is proposed. The system is forced with additional fictitious periodic winds that produce an emergence of ROs yielding strong phase dependence with the periodic forcing. The subsequent analysis reveals the character of the wind forcing that is most likely to excite a RO. All the results are discussed within the general framework of climate dynamics.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 175-185 ◽  
Author(s):  
C. G. Piecuch ◽  
R. M. Ponte

Abstract. A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian inland seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin) is identified based on Gravity Recovery and Climate Experiment (GRACE) retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is correlated with the North Atlantic Oscillation and is associated with net flows into and out of the Canadian inland seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, probably related to wind setup, as well as over the northern North Atlantic Ocean, possibly mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian inland seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.


2017 ◽  
Vol 30 (13) ◽  
pp. 4997-5019 ◽  
Author(s):  
Stephan Juricke ◽  
Tim N. Palmer ◽  
Laure Zanna

In global ocean models, the representation of small-scale, high-frequency processes considerably influences the large-scale oceanic circulation and its low-frequency variability. This study investigates the impact of stochastic perturbation schemes based on three different subgrid-scale parameterizations in multidecadal ocean-only simulations with the ocean model NEMO at 1° resolution. The three parameterizations are an enhanced vertical diffusion scheme for unstable stratification, the Gent–McWilliams (GM) scheme, and a turbulent kinetic energy mixing scheme, all commonly used in state-of-the-art ocean models. The focus here is on changes in interannual variability caused by the comparatively high-frequency stochastic perturbations with subseasonal decorrelation time scales. These perturbations lead to significant improvements in the representation of low-frequency variability in the ocean, with the stochastic GM scheme showing the strongest impact. Interannual variability of the Southern Ocean eddy and Eulerian streamfunctions is increased by an order of magnitude and by 20%, respectively. Interannual sea surface height variability is increased by about 20%–25% as well, especially in the Southern Ocean and in the Kuroshio region, consistent with a strong underestimation of interannual variability in the model when compared to reanalysis and altimetry observations. These results suggest that enhancing subgrid-scale variability in ocean models can improve model variability and potentially its response to forcing on much longer time scales, while also providing an estimate of model uncertainty.


Sign in / Sign up

Export Citation Format

Share Document