scholarly journals The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models

2013 ◽  
Vol 26 (10) ◽  
pp. 3258-3274 ◽  
Author(s):  
K. D. Williams ◽  
A. Bodas-Salcedo ◽  
M. Déqué ◽  
S. Fermepin ◽  
B. Medeiros ◽  
...  

Abstract The Transpose-Atmospheric Model Intercomparison Project (AMIP) is an international model intercomparison project in which climate models are run in “weather forecast mode.” The Transpose-AMIP II experiment is run alongside phase 5 of the Coupled Model Intercomparison Project (CMIP5) and allows processes operating in climate models to be evaluated, and the origin of climatological biases to be explored, by examining the evolution of the model from a state in which the large-scale dynamics, temperature, and humidity structures are constrained through use of common analyses. The Transpose-AMIP II experimental design is presented. The project requests participants to submit a comprehensive set of diagnostics to enable detailed investigation of the models to be performed. An example of the type of analysis that may be undertaken using these diagnostics is illustrated through a study of the development of cloud biases over the Southern Ocean, a region that is problematic for many models. Several models share a climatological bias for too little reflected shortwave radiation from cloud across the region. This is found to mainly occur behind cold fronts and/or on the leading side of transient ridges and to be associated with more stable lower-tropospheric profiles. Investigation of a case study that is typical of the bias and associated meteorological conditions reveals the models to typically simulate cloud that is too optically and physically thin with an inversion that is too low. The evolution of the models within the first few hours suggests that these conditions are particularly sensitive and a positive feedback can develop between the thinning of the cloud layer and boundary layer structure.

2020 ◽  
Vol 33 (15) ◽  
pp. 6555-6581 ◽  
Author(s):  
R. L. Beadling ◽  
J. L. Russell ◽  
R. J. Stouffer ◽  
M. Mazloff ◽  
L. D. Talley ◽  
...  

AbstractThe air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct consequence of the unique and complex ocean circulation that exists there. Previous generations of climate models have struggled to accurately represent key SO properties and processes that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly represented. While generational improvement is found in many metrics, persistent systematic biases are highlighted that should be a priority during model development. These biases need to be considered when interpreting projected trends or biogeochemical properties in this region.


2014 ◽  
Vol 27 (6) ◽  
pp. 2444-2456 ◽  
Author(s):  
Dennis L. Hartmann ◽  
Paulo Ceppi

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) observations of global top-of-atmosphere radiative energy fluxes for the period March 2000–February 2013 are examined for robust trends and variability. The trend in Arctic ice is clearly evident in the time series of reflected shortwave radiation, which closely follows the record of ice extent. The data indicate that, for every 106 km2 decrease in September sea ice extent, annual-mean absorbed solar radiation averaged over 75°–90°N increases by 2.5 W m−2, or about 6 W m−2 between 2000 and 2012. CMIP5 models generally show a much smaller change in sea ice extent over the 1970–2012 period, but the relationship of sea ice extent to reflected shortwave is in good agreement with recent observations. Another robust trend during this period is an increase in reflected shortwave radiation in the zonal belt from 45° to 65°S. This trend is mostly related to increases in sea ice concentrations in the Southern Ocean and less directly related to cloudiness trends associated with the annular variability of the Southern Hemisphere. Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) produce a scaling of cloud reflection to zonal wind increase that is similar to trend observations in regions separated from the direct effects of sea ice. Atmospheric Model Intercomparison Project (AMIP) model responses over the Southern Ocean are not consistent with each other or with the observed shortwave trends in regions removed from the direct effect of sea ice.


2020 ◽  
Vol 16 (5) ◽  
pp. 1847-1872 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) – hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.


2013 ◽  
Vol 26 (24) ◽  
pp. 9946-9959 ◽  
Author(s):  
K. J. Tory ◽  
S. S. Chand ◽  
J. L. McBride ◽  
H. Ye ◽  
R. A. Dare

Abstract Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for 13 global models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the Okubo–Weiss–Zeta parameter (OWZP) TC-detection method developed by the authors in earlier papers. The method detects large-scale conditions within which TCs form. It was developed and tuned in atmospheric reanalysis data and then applied without change to the climate models to ensure model and detector independence. Changes in TC frequency are determined by comparing TC detections in the CMIP5 historical runs (1970–2000) with high emission scenario (representative concentration pathway 8.5) future runs (2070–2100). A number of the models project increases in frequency of higher-latitude tropical cyclones in the late twenty-first century. Inspection reveals that these high-latitude systems were subtropical in origin and are thus eliminated from the analysis using an objective classification technique. TC detections in 8 of the 13 models reproduce observed TC formation numbers and geographic distributions reasonably well, with annual numbers within ±50% of observations. TC detections in the remaining five models are particularly low in number (10%–28% of observed). The eight models with a reasonable TC climatology all project decreases in global TC frequency varying between 7% and 28%. Large intermodel and interbasin variations in magnitude and sign are present, with the greatest variations in the Northern Hemisphere basins. These results are consistent with results from earlier-generation climate models and thus confirm the robustness of coupled model projections of globally reduced TC frequency.


2020 ◽  
Author(s):  
Qiong Zhang ◽  
Qiang Li ◽  
Qiang Zhang ◽  
Ellen Berntell ◽  
Josefine Axelsson ◽  
...  

Abstract. Paleoclimate modelling has long been regarded as a strong out-of-sample test-bed of the climate models that are used for the projection of future climate changes. For the first time, the EC-Earth model contributes to the Paleoclimate Model Intercomparison Project (PMIP) phase 4, which is part of the current sixth phase of the Coupled Model Intercomparison Project (CMIP6). Here, we document the model setup for PMIP4 experiments with EC-Earth3-LR and present the results on the large-scale features from the completed production simulations for the three past warm periods (mid-Holocene, Last Interglacial, and mid-Pliocene). Using the pre-industrial climate as a reference state, we show the changes in global temperature, large scale Hadley circulation and Walker circulation, polar warming and global monsoons, as well as the climate variability modes (ENSO, PDO, AMO). The EC-Earth3-LR simulates reasonable climate responses during past warm periods as shown in the other PMIP4-CMIP6 model ensemble. The systematic comparison of these climate changes in three past warm periods in an individual model demonstrates the ability of the model to capture the climate response under different climate forcings, providing potential implications for confidence in future projections with EC-Earth model.


2020 ◽  
Author(s):  
Chris Brierley ◽  
Anni Zhao ◽  
Sandy Harrison ◽  
Pascale Braconnot ◽  

<p>The mid-Holocene (6,000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall.  Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on climate sensitivity and feedback strength.</p>


2020 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on climate sensitivity and feedback strength.


2020 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ~ 400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution and based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.4 and 4.7 °C relative to pre-industrial with a multi-model mean value of 2.8 °C. Annual mean total precipitation rates increase by 6 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases are 1.3 °C greater over the land than over the oceans, and there is a clear pattern of polar amplification with warming polewards of 60° N and 60° S exceeding the global mean warming by a factor of 2.4. In the Atlantic and Pacific Oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. Although there are some modelling constraints, there is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (Equilibrium Climate Sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble earth system response to doubling of CO2 (including ice sheet feedbacks) is approximately 50 % greater than ECS, consistent with results from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea-surface temperatures are used to assess model estimates of ECS and indicate a range in ECS from 2.5 to 4.3 °C. This result is in general accord with the range in ECS presented by previous IPCC Assessment Reports.


2020 ◽  
Author(s):  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
Helene Seroussi ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.


2017 ◽  
Vol 10 (2) ◽  
pp. 585-607 ◽  
Author(s):  
William J. Collins ◽  
Jean-François Lamarque ◽  
Michael Schulz ◽  
Olivier Boucher ◽  
Veronika Eyring ◽  
...  

Abstract. The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.


Sign in / Sign up

Export Citation Format

Share Document