scholarly journals Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios

2013 ◽  
Vol 26 (17) ◽  
pp. 6591-6617 ◽  
Author(s):  
Thomas R. Knutson ◽  
Joseph J. Sirutis ◽  
Gabriel A. Vecchi ◽  
Stephen Garner ◽  
Ming Zhao ◽  
...  

Abstract Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3 models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models. Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from the regional model are further downscaled into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution. A significant reduction in tropical storm frequency is projected for the CMIP3 (−27%), CMIP5-early (−20%) and CMIP5-late (−23%) ensembles and for 5 of the 10 individual CMIP3 models. Lifetime maximum hurricane intensity increases significantly in the high-resolution experiments—by 4%–6% for CMIP3 and CMIP5 ensembles. A significant increase (+87%) in the frequency of very intense (categories 4 and 5) hurricanes (winds ≥ 59 m s−1) is projected using CMIP3, but smaller, only marginally significant increases are projected (+45% and +39%) for the CMIP5-early and CMIP5-late scenarios. Hurricane rainfall rates increase robustly for the CMIP3 and CMIP5 scenarios. For the late-twenty-first century, this increase amounts to +20% to +30% in the model hurricane’s inner core, with a smaller increase (~10%) for averaging radii of 200 km or larger. The fractional increase in precipitation at large radii (200–400 km) approximates that expected from environmental water vapor content scaling, while increases for the inner core exceed this level.

2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2021 ◽  
Author(s):  
Tristan Perotin

<p>Winter windstorms are one of the major natural hazards affecting Europe, potentially causing large damages. The study of windstorm risks is therefore particularly important for the insurance industry. Physical natural catastrophe models for the insurance industry appeared in the 1980s and enable a fine analysis of the risk by taking into account all of its components (hazard, vulnerability and exposure). One main aspect of this catastrophe modeling is the production and validation of extreme hazard scenarios. As observational weather data is very sparse before the 1980s, estimates of extreme windstorm risks are usually based on climate models, despite the limited resolution of these models. Even though this limitation can be partially corrected by statistical or dynamical downscaling and calibration techniques, new generations of climate models can bring new understanding of windstorm risks.</p><p>In that context, PRIMAVERA, a European Union Horizon2020 project, made available a windstorm event set based on 21 tier 1 (1950-2014) highresSST-present simulations of the High Resolution Model Intercomparison Project (HighResMIP) component of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The events were identified with a storm tracking algorithm, footprints were defined for each event as maximum gusts over a 72 hour period, and the footprints were re-gridded to the ERA5 grid and calibrated with a quantile mapping correction method. The native resolution of these simulations ranges from 150km (typical resolution of the CMIP5 models) to 25km.</p><p>We have studied the applicability of the PRIMAVERA European windstorm event set for the modeling of European windstorm risks for the insurance sector. Preliminary results show that losses simulated from the event set appear to be consistent with historical data for all of the included simulations. The event set enables a better representation of attritional events and storm clustering than other existing event sets. An alternative calibration technique for extreme gusts and potential future developments of the event set will be proposed.</p>


2013 ◽  
Vol 26 (18) ◽  
pp. 7044-7059 ◽  
Author(s):  
Giacomo Masato ◽  
Brian J. Hoskins ◽  
Tim Woollings

Abstract The frequencies of atmospheric blocking in both winter and summer and the changes in them from the twentieth to the twenty-first centuries as simulated in 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. The representative concentration pathway 8.5 (RCP8.5) high emission scenario runs are used to represent the twenty-first century. The analysis is based on the wave-breaking methodology of Pelly and Hoskins. It differs from the Tibaldi and Molteni index in viewing equatorward cutoff lows and poleward blocking highs in equal manner as indicating a disruption to the westerlies. One-dimensional and two-dimensional diagnostics are applied to identify blocking of the midlatitude storm track and also at higher latitudes. Winter blocking frequency is found to be generally underestimated. The models give a decrease in the European blocking maximum in the twenty-first century, consistent with the results in other studies. There is a mean twenty-first-century winter poleward shift of high-latitude blocking but little agreement between the models on the details. In summer, Eurasian blocking is also underestimated in the models, whereas it is now too large over the high-latitude ocean basins. A decrease in European blocking frequency in the twenty-first-century model runs is again found. However, in summer there is a clear eastward shift of blocking over eastern Europe and western Russia, in a region close to the blocking that dominated the Russian summer of 2010. While summer blocking decreases in general, the poleward shift of the storm track into the region of frequent high-latitude blocking may mean that the incidence of storms being obstructed by blocks may actually increase.


2013 ◽  
Vol 26 (24) ◽  
pp. 9946-9959 ◽  
Author(s):  
K. J. Tory ◽  
S. S. Chand ◽  
J. L. McBride ◽  
H. Ye ◽  
R. A. Dare

Abstract Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for 13 global models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the Okubo–Weiss–Zeta parameter (OWZP) TC-detection method developed by the authors in earlier papers. The method detects large-scale conditions within which TCs form. It was developed and tuned in atmospheric reanalysis data and then applied without change to the climate models to ensure model and detector independence. Changes in TC frequency are determined by comparing TC detections in the CMIP5 historical runs (1970–2000) with high emission scenario (representative concentration pathway 8.5) future runs (2070–2100). A number of the models project increases in frequency of higher-latitude tropical cyclones in the late twenty-first century. Inspection reveals that these high-latitude systems were subtropical in origin and are thus eliminated from the analysis using an objective classification technique. TC detections in 8 of the 13 models reproduce observed TC formation numbers and geographic distributions reasonably well, with annual numbers within ±50% of observations. TC detections in the remaining five models are particularly low in number (10%–28% of observed). The eight models with a reasonable TC climatology all project decreases in global TC frequency varying between 7% and 28%. Large intermodel and interbasin variations in magnitude and sign are present, with the greatest variations in the Northern Hemisphere basins. These results are consistent with results from earlier-generation climate models and thus confirm the robustness of coupled model projections of globally reduced TC frequency.


2015 ◽  
Vol 28 (23) ◽  
pp. 9313-9331 ◽  
Author(s):  
Robinson I. Negrón-Juárez ◽  
William J. Riley ◽  
Charles D. Koven ◽  
Ryan G. Knox ◽  
Philip G. Taylor ◽  
...  

Abstract In this study, the authors used the relationship between mean annual rainfall (MAR) and net primary production (NPP) (MAR–NPP) observed in tropical forests to evaluate the performance (twentieth century) and predictions (twenty-first century) of tropical NPP from 10 earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Over the tropical forest domain most of the CMIP5 models showed a positive correlation between NPP and MAR similar to observations. The GFDL, CESM1, CCSM4, and Beijing Normal University (BNU) models better represented the observed MAR–NPP relationship. Compared with observations, the models were able to reproduce the seasonality of rainfall over areas with long dry seasons, but NPP seasonality was difficult to evaluate given the limited observations. From 2006 to 2100, for representative concentration pathway 8.5 (RCP8.5) (and most RCP4.5 simulations) all models projected increases in NPP, but these increases occurred at different rates. By the end of the twenty-first century the models with better performance against observed NPP–MAR projected increases in NPP between ~2% (RCP4.5) and ~19% (RCP8.5) relative to contemporary observations, representing increases of ~9% and ~25% relative to their historical simulations. When climate and CO2 fertilization are considered as separate controls on plant physiology, the current climate yields maximum productivity. However, as future climate changes become detrimental to productivity, CO2 fertilization becomes the dominant response, resulting in an overall increase in NPP toward the end of the twenty-first century. Thus, the way in which models represent CO2 fertilization affects their performance. Further studies addressing the individual and simultaneous effect of other climate variables on NPP are needed.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2013 ◽  
Vol 26 (19) ◽  
pp. 7692-7707 ◽  
Author(s):  
Yao Yao ◽  
Yong Luo ◽  
Jianbin Huang ◽  
Zongci Zhao

Abstract The extreme monthly-mean temperatures simulated by 28 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are evaluated and compared with those from 24 models in the third phase of the Coupled Model Intercomparison Project (CMIP3). Comparisons with observations and reanalyses indicate that the models from both CMIP3 and CMIP5 perform well in simulating temperature extremes, which are expressed as 20-yr return values. When the climatological annual cycle is removed, the ensemble spread in CMIP5 is smaller than that in CMIP3. Benefitting from a higher resolution, the CMIP5 models perform better at simulating extreme temperatures on the local gridcell scale. The CMIP5 representative concentration pathway (RCP4.5) and CMIP3 B1 experiments project a similar change pattern in the near future for both warm and cold extremes, and the pattern is in agreement with that of the seasonal extremes. By the late twenty-first century, the changes in monthly temperature extremes projected under the three CMIP3 (B1, A1B, and A2) and two CMIP5 (RCP4.5 and RCP8.5) scenarios generally follow the changes in climatological annual cycles, which is consistent with previous studies on daily extremes. Compared with the CMIP3 ensemble, the CMIP5 ensemble shows a larger intermodel uncertainty with regard to the change in cold extremes in snow-covered regions. Enhanced changes in extreme temperatures that exceed the global mean warming are found in regions where the retreat of snow (or the soil moisture feedback effect) plays an important role, confirming the findings for daily temperature extremes.


2020 ◽  
Author(s):  
June-Yi Lee ◽  
Kyung-Sook Yun ◽  
Arjun Babu ◽  
Young-Min Yang ◽  
Eui-Seok Chung ◽  
...  

<p><span>The Coupled Model Intercomparison Project Phase 5 (CMIP5) models have showed substantial inter-model spread in estimating annual global-mean precipitation change per one-degree greenhouse-gas-induced warming (precipitation sensitivity), ranging from -4.5</span><span>–4.2</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the Representative Concentration Pathway (RCP) 2.6, the lowest emission scenario, to 0.2–4.0</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the RCP 8.5, the highest emission scenario. The observed-based estimations in the global-mean land precipitation sensitivity during last few decades even show much larger spread due to the considerable natural interdecadal variability, role of anthropogenic aerosol forcing, and uncertainties in observation. This study tackles to better quantify and constrain global land precipitation change in response to global warming by analyzing the new range of Shared Socio-economic Pathway (SSP) scenarios in the </span><span>Coupled Model Intercomparison Project Phase 6 (CMIP6) compared with RCP scenarios in the CMIP5. We show that the range of projected change in annual global-mean land (ocean) precipitation by the end of the 21<sup>st</sup>century relative to the recent past (1995-2014) in the 23 CMIP6 models is over 50% (20%) larger than that in corresponding scenarios of the 40 CMIP5 models. The estimated ranges of precipitation sensitivity in four Tier-1 SSPs are also larger than those in corresponding CMIP5 RCPs. The large increase in projected precipitation change in the highest quartile over ocean is mainly due to the increased number of high equilibrium climate sensitivity (ECS) models in CMIP6 compared to CMIP5, but not over land due to different response of thermodynamic moisture convergence and dynamic processes to global warming. We further discuss key challenges in constraining future precipitation change and source of uncertainties in land precipitation change.</span></p>


2017 ◽  
Vol 30 (16) ◽  
pp. 6481-6503 ◽  
Author(s):  
Yongwen Liu ◽  
Shilong Piao ◽  
Xu Lian ◽  
Philippe Ciais ◽  
W. Kolby Smith

Seventeen Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were evaluated, focusing on the seasonal sensitivities of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual variations in temperature and precipitation during 1982–2005 and their changes over the twenty-first century. Temperature sensitivity of NPP in ESMs was generally consistent across northern high-latitude biomes but significantly more negative for tropical and subtropical biomes relative to satellite-derived estimates. The temperature sensitivity of NBP in both inversion-based and ESM estimates was generally consistent in March–May (MAM) and September–November (SON) for tropical forests, semiarid ecosystems, and boreal forests. By contrast, for inversion-based NBP estimates, temperature sensitivity of NBP was nonsignificant for June–August (JJA) for all biomes except boreal forest; whereas, for ESM NBP estimates, the temperature sensitivity for JJA was significantly negative for all biomes except shrublands and subarctic ecosystems. Both satellite-derived NPP and inversion-based NBP are often decoupled from precipitation, whereas ESM NPP and NBP estimates are generally positively correlated with precipitation, suggesting that ESMs are oversensitive to precipitation. Over the twenty-first century, changes in temperature sensitivities of NPP, Rh, and NBP are consistent across all RCPs but stronger under more intensive scenarios. The temperature sensitivity of NBP was found to decrease in tropics and subtropics and increase in northern high latitudes in MAM due to an increased temperature sensitivity of NPP. Across all biomes, projected temperature sensitivity of NPP decreased in JJA and SON. Projected precipitation sensitivity of NBP did not change across biomes, except over grasslands in MAM.


Sign in / Sign up

Export Citation Format

Share Document