scholarly journals Understanding Multidecadal Variability in ENSO Amplitude

2014 ◽  
Vol 27 (11) ◽  
pp. 4037-4051 ◽  
Author(s):  
Alexandria M. Russell ◽  
Anand Gnanadesikan

Abstract Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between ocean and atmosphere driven largely by El Niño–Southern Oscillation (ENSO). ENSO amplitude is known to vary on long time scales, which makes it difficult to quantify its response to climate change and constrain the physical processes that drive it. To characterize the long-period variability in ocean–atmosphere coupling strengths, a linear regression of local SST changes is applied to the 4000-yr GFDL Climate Model, version 2.1 (CM2.1) and the 500-yr GFDL CM2 with Modular Ocean Model version 4p1 (MOM4p1) at coarse resolution (CM2Mc) preindustrial control runs, while also comparing to the observationally constrained Ensemble Coupled Data Assimilation (ECDA) dataset. The models produce regression coefficients that vary widely on multidecadal time scales. These variations are strongly reflected in the long-period modulation of ocean stratification and surface precipitation. During high variance periods, when there is stronger stratification and precipitation in the central equatorial Pacific, the ocean’s surface is less responsive to zonal wind stress perturbations, while the atmosphere is more responsive to SST perturbations. The mechanisms underlying this behavior are examined through an expansion of the linear regression equation to individual temperature tendency components. Long-term changes in ENSO amplitude are due to changes in both the oceanic response to the atmosphere, which is predominantly driven by regional changes in the advective and vertical diffusive heat tendencies, and the atmospheric response to the ocean.

2017 ◽  
Vol 21 (1) ◽  
pp. 409-422 ◽  
Author(s):  
Jason P. Evans ◽  
Xianhong Meng ◽  
Matthew F. McCabe

Abstract. In this study, we have examined the ability of a regional climate model (RCM) to simulate the extended drought that occurred throughout the period of 2002 through 2007 in south-east Australia. In particular, the ability to reproduce the two drought peaks in 2002 and 2006 was investigated. Overall, the RCM was found to reproduce both the temporal and the spatial structure of the drought-related precipitation anomalies quite well, despite using climatological seasonal surface characteristics such as vegetation fraction and albedo. This result concurs with previous studies that found that about two-thirds of the precipitation decline can be attributed to the El Niño–Southern Oscillation (ENSO). Simulation experiments that allowed the vegetation fraction and albedo to vary as observed illustrated that the intensity of the drought was underestimated by about 10 % when using climatological surface characteristics. These results suggest that in terms of drought development, capturing the feedbacks related to vegetation and albedo changes may be as important as capturing the soil moisture–precipitation feedback. In order to improve our modelling of multi-year droughts, the challenge is to capture all these related surface changes simultaneously, and provide a comprehensive description of land surface–precipitation feedback during the droughts development.


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


2019 ◽  
Vol 19 (5) ◽  
pp. 3417-3432 ◽  
Author(s):  
Sabine Haase ◽  
Katja Matthes

Abstract. Recent observational and modeling studies suggest that stratospheric ozone depletion not only influences the surface climate in the Southern Hemisphere (SH), but also impacts Northern Hemisphere (NH) spring, which implies a strong interaction between dynamics and chemistry. Here, we systematically analyze the importance of interactive chemistry with respect to the representation of stratosphere–troposphere coupling and in particular the effects on NH surface climate during the recent past. We use the interactive and specified chemistry version of NCAR's Whole Atmosphere Community Climate Model coupled to an ocean model to investigate differences in the mean state of the NH stratosphere as well as in stratospheric extreme events, namely sudden stratospheric warmings (SSWs), and their surface impacts. To be able to focus on differences that arise from two-way interactions between chemistry and dynamics in the model, the specified chemistry model version uses a time-evolving, model-consistent ozone field generated by the interactive chemistry model version. We also test the effects of zonally symmetric versus asymmetric prescribed ozone, evaluating the importance of ozone waves in the representation of stratospheric mean state and variability. The interactive chemistry simulation is characterized by a significantly stronger and colder polar night jet (PNJ) during spring when ozone depletion becomes important. We identify a negative feedback between lower stratospheric ozone and atmospheric dynamics during the breakdown of the stratospheric polar vortex in the NH, which contributes to the different characteristics of the PNJ between the simulations. Not only the mean state, but also stratospheric variability is better represented in the interactive chemistry simulation, which shows a more realistic distribution of SSWs as well as a more persistent surface impact afterwards compared with the simulation where the feedback between chemistry and dynamics is switched off. We hypothesize that this is also related to the feedback between ozone and dynamics via the intrusion of ozone-rich air into polar latitudes during SSWs. The results from the zonally asymmetric ozone simulation are closer to the interactive chemistry simulations, implying that under a model-consistent ozone forcing, a three-dimensional (3-D) representation of the prescribed ozone field is desirable. This suggests that a 3-D ozone forcing, as recommended for the upcoming CMIP6 simulations, has the potential to improve the representation of stratospheric dynamics and chemistry. Our findings underline the importance of the representation of interactive chemistry and its feedback on the stratospheric mean state and variability not only in the SH but also in the NH during the recent past.


2020 ◽  
Author(s):  
Moritz Kreuzer ◽  
Ronja Reese ◽  
Willem Huiskamp ◽  
Stefan Petri ◽  
Ricarda Winkelmann

<p>Ocean-ice shelf interactions are the main drivers for the current mass loss from the Antarctic Ice Sheet. Recent studies have shown that increased continental meltwater input can enhance discharge through ice-ocean feedbacks. This raises the need for interactive modelling between ocean and ice-sheet systems to assess the consequences of additional freshwater input on the Antarctic region and beyond. While high-resolution simulations (1/4 degree or greater) can resolve detailed interactions between the ocean and ice shelf, the computational costs make them applicable only for regional studies or decadal to centennial time scales. In this study we present a framework for coupling a coarse resolution ocean model (MOM) to the Parallel Ice Sheet Model (PISM) via the Potsdam Ice-shelf Cavity mOdel (PICO). The intermediate model PICO approximates the overturning circulation in ice shelf cavities and includes ice-ocean boundary layer physics. We present this offline coupling approach and discuss the fluxes exchanged between the distinct model runs as well as energy and mass conservation. Using this flexible and computationally efficient framework, feedbacks between the ice and ocean can be analysed on a global spatial scale and paleoclimate time-scales.</p><p> </p>


2013 ◽  
Vol 26 (17) ◽  
pp. 6524-6534 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Yukiko Imada ◽  
Masato Mori ◽  
Masahide Kimoto ◽  
Hiroyasu Hasumi

Abstract Delayed negative feedback processes determining intrinsic decadal and bidecadal time scales for the tropical variability in the Pacific are investigated based on climate model experiments. By comparing a control run driven by preindustrial forcing and partial blocking runs driven by the same forcing but with ocean temperature and salinity restored to climatology in selected regions, subsurface oceanic signals of South Pacific origin are shown to precede SST variability in the Niño-3.4 region. Using a linear reduced-gravity ocean model driven only by wind stress changes and an offline tracer model, oceanic wave adjustment triggered by changes of wind stress curl in the South Pacific extratropics is suggested to be essential for the decadal component of the equatorial SST, while slower isopycnal advection of subsurface temperature anomalies from the formation region of South Pacific Eastern Subtropical Mode Water controls the bidecadal component. The intrinsic time scales of the tropical variability are regulated by simple linear ocean dynamics.


2013 ◽  
Vol 26 (23) ◽  
pp. 9399-9407 ◽  
Author(s):  
Simon Borlace ◽  
Wenju Cai ◽  
Agus Santoso

The amplitude of the El Niño–Southern Oscillation (ENSO) can vary naturally over multidecadal time scales and can be influenced by climate change. However, determining the mechanism for this variation is difficult because of the paucity of observations over such long time scales. Using a 1000-yr integration of a coupled global climate model and a linear stability analysis, it is demonstrated that multidecadal modulation of ENSO amplitude can be driven by variations in the governing dynamics. In this model, the modulation is controlled by the underlying thermocline feedback mechanism, which in turn is governed by the response of the oceanic thermocline slope across the equatorial Pacific to changes in the overlying basinwide zonal winds. Furthermore, the episodic strengthening and weakening of this coupled interaction is shown to be linked to the slowly varying background climate. In comparison with the model statistics, the recent change of ENSO amplitude in observations appears to be still within the range of natural variability. This is despite the apparent warming trend in the mean climate. Hence, this study suggests that it may be difficult to infer a climate change signal from changes in ENSO amplitude alone, particularly given the presently limited observational data.


2009 ◽  
Vol 22 (9) ◽  
pp. 2494-2499 ◽  
Author(s):  
Gokhan Danabasoglu ◽  
Peter R. Gent

Abstract The equilibrium climate sensitivity of a climate model is usually defined as the globally averaged equilibrium surface temperature response to a doubling of carbon dioxide. This is virtually always estimated in a version with a slab model for the upper ocean. The question is whether this estimate is accurate for the full climate model version, which includes a full-depth ocean component. This question has been answered for the low-resolution version of the Community Climate System Model, version 3 (CCSM3). The answer is that the equilibrium climate sensitivity using the full-depth ocean model is 0.14°C higher than that using the slab ocean model, which is a small increase. In addition, these sensitivity estimates have a standard deviation of nearly 0.1°C because of interannual variability. These results indicate that the standard practice of using a slab ocean model does give a good estimate of the equilibrium climate sensitivity of the full CCSM3. Another question addressed is whether the effective climate sensitivity is an accurate estimate of the equilibrium climate sensitivity. Again the answer is yes, provided that at least 150 yr of data from the doubled carbon dioxide run are used.


2020 ◽  
Author(s):  
Hsi-Yen Ma ◽  
Chen Zhou ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Mark D. Zelinka ◽  
...  

Abstract. We present a multi-year short-range hindcast experiment and its experiment procedure for better evaluating both the mean state and variability of atmospheric moist processes in climate models from diurnal to interannual time scales to facilitate model development. We use the Community Earth System Model version 1 as the based model and performed a suite of 3-day long hindcasts every day starting at 00Z from 1997 to 2012. Three processes – the diurnal cycle of clouds during different cloud regimes over the Central U.S., precipitation and diabatic heating associated with the Madden-Julian Oscillation propagation, and the response of moist processes to sea surface temperature anomalies associated with the El Niño-Southern Oscillation – are evaluated as examples to demonstrate how one can better utilize simulations from this experiment design to gain insights into model errors and their connection to physical parameterizations or large-scale state. This is achieved by comparing the hindcasts with corresponding long-term observations for periods based on different phenomena. These analyses can only be done through this multi-year hindcast approach to establish robust statistics of the processes under well-controlled large-scale environment. Furthermore, comparison of hindcasts to the typical simulations in climate mode with the same model allows one to infer what portion of a model’s climate error directly comes from fast errors in the parameterizations of moist processes. As demonstrated here, model biases in the mean state and variability associated parameterized moist processes usually develop within a few days, and manifest within weeks to affect the simulations of large-scale circulation and ultimately the climate mean state and variability. Therefore, model developers can achieve additional useful understanding of the underlying problems in model physics by conducting a multi-year hindcast experiment.


2021 ◽  
Vol 14 (1) ◽  
pp. 275-293
Author(s):  
Adam T. Blaker ◽  
Manoj Joshi ◽  
Bablu Sinha ◽  
David P. Stevens ◽  
Robin S. Smith ◽  
...  

Abstract. FORTE 2.0 is an intermediate-resolution coupled atmosphere–ocean general circulation model (AOGCM) consisting of the Intermediate General Circulation Model 4 (IGCM4), a T42 spectral atmosphere with 35σ layers, coupled to Modular Ocean Model – Array (MOMA), a 2∘ × 2∘ ocean with 15 z-layer depth levels. Sea ice is represented by a simple flux barrier. Both the atmosphere and ocean components are coded in Fortran. It is capable of producing a stable climate for long integrations without the need for flux adjustments. One flexibility afforded by the IGCM4 atmosphere is the ability to configure the atmosphere with either 35σ layers (troposphere and stratosphere) or 20σ layers (troposphere only). This enables experimental designs for exploring the roles of the troposphere and stratosphere, and the faster integration of the 20σ layer configuration enables longer duration studies on modest hardware. A description of FORTE 2.0 is given, followed by the analysis of two 2000-year control integrations, one using the 35σ configuration of IGCM4 and one using the 20σ configuration.


2020 ◽  
Vol 33 (3) ◽  
pp. 893-905 ◽  
Author(s):  
E. Moreno-Chamarro ◽  
J. Marshall ◽  
T. L. Delworth

AbstractWe examine the link between migrations in the intertropical convergence zone (ITCZ) and changes in the Atlantic meridional overturning circulation (AMOC), Atlantic multidecadal variability (AMV), and Pacific decadal oscillation (PDO). We use a coupled climate model that allows us to integrate over climate noise and assess underlying mechanisms. We use an ensemble of ten 300-yr-long simulations forced by a 50-yr oscillatory North Atlantic Oscillation (NAO)-derived surface heat flux anomaly in the North Atlantic, and a 4000-yr-long preindustrial control simulation performed with GFDL CM2.1. In both setups, an AMV phase change induced by a change in the AMOC’s cross-equatorial heat transport forces an atmospheric interhemispheric energy imbalance that is compensated by a change in the cross-equatorial atmospheric heat transport due to a meridional ITCZ shift. Such linkages occur on decadal time scales in the ensemble driven by the imposed forcing, and internally on multicentennial time scales in the control. Regional precipitation anomalies differ between the ensemble and the control for a zonally averaged ITCZ shift of similar magnitude, which suggests a dependence on time scale. Our study supports observational evidence of an AMV–ITCZ link in the twentieth century and further links it to the AMOC, whose long-time-scale variability can influence the phasing of ITCZ migrations. In contrast to the AMV, our calculations suggest that the PDO does not drive ITCZ migrations, because the PDO does not modulate the interhemispheric energy balance.


Sign in / Sign up

Export Citation Format

Share Document