scholarly journals Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP

2018 ◽  
Vol 11 (9) ◽  
pp. 3681-3712 ◽  
Author(s):  
Christopher D. Roberts ◽  
Retish Senan ◽  
Franco Molteni ◽  
Souhail Boussetta ◽  
Michael Mayer ◽  
...  

Abstract. This paper presents atmosphere-only and coupled climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal ensemble experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6). These experiments are used to evaluate the sensitivity of major biases in the atmosphere, ocean, and cryosphere to changes in atmosphere and ocean resolution. All configurations successfully reproduce the observed long-term trends in global mean surface temperature. Furthermore, following an adjustment to account for drift in the subsurface ocean, coupled configurations of ECMWF-IFS realistically reproduce observation-based estimates of ocean heat content change since 1950. Climatological surface biases in ECMWF-IFS are relatively insensitive to an increase in atmospheric resolution from  ∼ 50 to  ∼ 25 km. However, increasing the horizontal resolution of the atmosphere while maintaining the same vertical resolution enhances the magnitude of a cold bias in the lower stratosphere. In coupled configurations, there is a strong sensitivity to an increase in ocean model resolution from 1 to 0.25°. However, this sensitivity to ocean resolution takes many years to fully manifest and is less apparent in the first year of integration. This result has implications for the ECMWF coupled model development strategy that typically relies on the analysis of biases in short ( < 1 year) ensemble (re)forecast data sets. The impacts of increased ocean resolution are particularly evident in the North Atlantic and Arctic, where they are associated with an improved Atlantic meridional overturning circulation, increased meridional ocean heat transport, and more realistic sea-ice cover. In the tropical Pacific, increased ocean resolution is associated with improvements to the magnitude and asymmetry of El Niño–Southern Oscillation (ENSO) variability and better representation of non-linear sea surface temperature (SST)–radiation feedbacks during warm events. However, increased ocean model resolution also increases the magnitude of a warm bias in the Southern Ocean. Finally, there is tentative evidence that both ocean coupling and increased atmospheric resolution can improve teleconnections between tropical Pacific rainfall and geopotential height anomalies in the North Atlantic.

2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2020 ◽  
Vol 24 (3) ◽  
pp. 1131-1143 ◽  
Author(s):  
Thanh Le ◽  
Deg-Hyo Bae

Abstract. Climate extremes, such as floods and droughts, might have severe economic and societal impacts. Given the high costs associated with these events, developing early-warning systems is of high priority. Evaporation, which is driven by around 50 % of solar energy absorbed at surface of the Earth, is an important indicator of the global water budget, monsoon precipitation, drought monitoring and the hydrological cycle. Here we investigate the response of global evaporation to main modes of interannual climate variability, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). These climate modes may have an influence on temperature, precipitation, soil moisture and wind speed and are likely to have impacts on global evaporation. We utilized data of historical simulations and RCP8.5 (representative concentration pathway) future simulations derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results indicate that ENSO is an important driver of evaporation for many regions, especially the tropical Pacific. The significant IOD influence on evaporation is limited in western tropical Indian Ocean, while NAO is more likely to have impacts on evaporation of the North Atlantic European areas. There is high agreement between models in simulating the effects of climate modes on evaporation of these regions. Land evaporation is found to be less sensitive to considered climate modes compared to oceanic evaporation. The spatial influence of major climate modes on global evaporation is slightly more significant for NAO and the IOD and slightly less significant for ENSO in the 1906–2000 period compared to the 2006–2100 period. This study allows us to obtain insight about the predictability of evaporation and hence, may improve the early-warning systems of climate extremes and water resource management.


2009 ◽  
Vol 22 (14) ◽  
pp. 3926-3938 ◽  
Author(s):  
Holger Pohlmann ◽  
Johann H. Jungclaus ◽  
Armin Köhl ◽  
Detlef Stammer ◽  
Jochem Marotzke

Abstract This study aims at improving the forecast skill of climate predictions through the use of ocean synthesis data for initial conditions of a coupled climate model. For this purpose, the coupled model of the Max Planck Institute (MPI) for Meteorology, which consists of the atmosphere model ECHAM5 and the MPI Ocean Model (MPI-OM), is initialized with oceanic synthesis fields available from the German contribution to Estimating the Circulation and Climate of the Ocean (GECCO) project. The use of an anomaly coupling scheme during the initialization avoids the main problems with drift in the climate predictions. Thus, the coupled model is continuously forced to follow the density anomalies of the GECCO synthesis over the period 1952–2001. Hindcast experiments are initialized from this experiment at constant intervals. The results show predictive skill through the initialization up to the decadal time scale, particularly over the North Atlantic. Viewed over the time scales analyzed here (annual, 5-yr, and 10-yr mean), greater skill for the North Atlantic sea surface temperature (SST) is obtained in the hindcast experiments than in either a damped persistence or trend forecast. The Atlantic meridional overturning circulation hindcast closely follows that of the GECCO oceanic synthesis. Hindcasts of global-mean temperature do not obtain greater skill than either damped persistence or a trend forecast, owing to the SST errors in the GECCO synthesis, outside the North Atlantic. An ensemble of forecast experiments is subsequently performed over the period 2002–11. North Atlantic SST from the forecast experiment agrees well with observations until the year 2007, and it is higher than if simulated without the oceanic initialization (averaged over the forecast period). The results confirm that both the initial and the boundary conditions must be accounted for in decadal climate predictions.


2018 ◽  
Author(s):  
Christopher D. Roberts ◽  
Retish Senan ◽  
Franco Molteni ◽  
Souhail Boussetta ◽  
Michael Mayer ◽  
...  

Abstract. This paper presents atmosphere-only and coupled climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal ensemble experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMip) and phase 6 of the Coupled Model Intercomparison Project (CMIP6). These experiments are used to evaluate the sensitivity of major biases in the atmosphere, ocean, and cryosphere to changes in atmosphere and ocean resolution. Climatological surface biases in ECMWF-IFS are relatively insensitive to an increase in atmospheric resolution from ~50 km to ~25 km. However, increasing the horizontal resolution of the atmosphere while maintaining the same vertical resolution enhances the magnitude of a cold bias in the lower stratosphere. In coupled configurations, there is a strong sensitivity to an increase in ocean model resolution from 1° to 0.25°. However, this sensitivity to ocean resolution takes many years to fully manifest and is not apparent in the first year of integration. This result has implications for the ECMWF coupled model development strategy that typically relies on the analysis of biases in short (


2020 ◽  
Author(s):  
Chris Roberts ◽  
Frederic Vitart ◽  
Magdalena Balmaseda ◽  
Franco Molteni

&lt;p&gt;This study uses initialized forecasts to evaluate the wintertime North Atlantic response to an increase of ocean model resolution from ~100 km (LRO) to ~25 km (HRO) in the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF-IFS). Importantly, the simulated impacts are timescale-dependent such that impacts in subseasonal and seasonal forecasts cannot be extrapolated from multidecadal climate experiments. In general, mean biases are reduced in HRO relative to LRO configurations and the impact is increased at longer lead times. At subseasonal to seasonal lead times, surface heating anomalies over the Gulf Stream are associated with local increases to the poleward heat flux associated with transient atmospheric eddies. In contrast, surface heating anomalies in climate experiments are balanced by changes to the time-mean surface winds that resemble the steady response under linear dynamics. Some aspects of air-sea interaction exhibit a clear improvement with increased resolution at all lead times. However, it is difficult to identify the impact of increased ocean eddy activity in the variability of the overlying atmosphere. In particular, atmospheric blocking and the intensity of the storm track respond more strongly to mean biases and thus have a larger response at longer lead times. Finally, increased ocean resolution drives improvements to subseasonal predictability over Europe. This increase in skill seems to be a result of improvements to the Madden Julian Oscillation and its associated teleconnections rather than changes to air-sea interaction in the North Atlantic region.&lt;/p&gt;


2014 ◽  
Vol 27 (9) ◽  
pp. 3298-3317 ◽  
Author(s):  
Julie Deshayes ◽  
Ruth Curry ◽  
Rym Msadek

Abstract The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar gyre became fresher while the gyre and meridional circulations intensified. This is opposite to the relationship of freshening causing a weakened circulation, most often reproduced by climate models. The authors hypothesize that both these configurations exist but dominate on different time scales: a fresher subpolar gyre when the circulation is more intense, at interannual frequencies (configuration A), and a saltier subpolar gyre when the circulation is more intense, at longer periods (configuration B). Rather than going into the detail of the mechanisms sustaining each configuration, the authors’ objective is to identify which configuration dominates and to test whether this depends on frequency, in preindustrial control runs of five climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). To this end, the authors have developed a novel intercomparison method that enables analysis of freshwater budget and circulation changes in a physical perspective that overcomes model specificities. Lag correlations and a cross-spectral analysis between freshwater content changes and circulation indices validate the authors’ hypothesis, as configuration A is only visible at interannual frequencies while configuration B is mostly visible at decadal and longer periods, suggesting that the driving role of salinity on the circulation depends on frequency. Overall, this analysis underscores the large differences among state-of-the-art climate models in their representations of the North Atlantic freshwater budget.


2015 ◽  
Vol 28 (6) ◽  
pp. 2203-2216 ◽  
Author(s):  
Hoffman H. N. Cheung ◽  
Wen Zhou

Abstract This study assesses the ability of the 25 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate Ural blocking (UB) and its linkage with the East Asian winter climate [December–February (DJF)] in a historical run (1950/51–2004/05). A Ural blocking index (UBI) is defined as the DJF-mean blocking frequency over 45°–90°E for each winter. Regression analyses suggest that the long-term mean bias of UBI is caused by the long-term mean circulation bias over the North Atlantic. On seasonal time scales, the GCMs simulating a positive bias of UBI are associated with a stronger Atlantic jet stream, as well as stronger westerly momentum fluxes from the North Atlantic to Europe. On synoptic time scales, however, these GCMs tend to be associated with a weaker Siberian high and East Asian trough during the evolution of a UB event. Altogether, there is no apparent linkage between the long-term mean bias of UB and the East Asian winter climate. Further studies are needed to explore the teleconnection between UB and the East Asian winter climate in the GCMs.


2015 ◽  
Vol 65 (8) ◽  
pp. 1079-1093 ◽  
Author(s):  
Annika Drews ◽  
Richard J. Greatbatch ◽  
Hui Ding ◽  
Mojib Latif ◽  
Wonsun Park

2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

&lt;p&gt;There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA&amp;#8217;s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document