scholarly journals Nonlinear ENSO Warming Suppression (NEWS)

2017 ◽  
Vol 30 (11) ◽  
pp. 4227-4251 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann

Abstract In global warming experiments, the majority of global climate models warm faster in the eastern equatorial Pacific than in the west and produce a weakening of the Walker circulation. In contrast, GFDL-ESM2M is an exception that exhibits a La Niña–like mean-state warming with a strengthening of the Walker circulation. This study explores the cause of this exceptional response and proposes a new mechanism, the nonlinear ENSO warming suppression (NEWS), where the transient heating rate difference between the atmospheric and oceanic reservoirs annihilates extreme El Niños, causing a suppression of mean-state warming in the east. Heat budget analyses of GFDL-ESM2M robustly show that nonlinear dynamical heating, which is necessary for extremely warm El Niños, becomes negligible under warming. An idealized nonlinear recharge oscillator model suggests that, if the temperature difference between the atmospheric and oceanic reservoirs becomes larger than some threshold value, the upwelling becomes too efficient for El Niño–Southern Oscillation (ENSO) to retain its nonlinearity. Therefore, extreme El Niños dissipate but La Niñas remain almost unchanged, causing a La Niña–like mean-state warming. NEWS is consistent with observations and GFDL-ESM2M but not with the majority of state-of-the-art models, which lack realistic ENSO nonlinearity. NEWS and its opposite response to atmospheric cooling, the nonlinear ENSO cooling suppression (NECS), might contribute to the Pacific multidecadal natural variability and global warming hiatuses.

2017 ◽  
Vol 30 (11) ◽  
pp. 4207-4225 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann ◽  
David S. Battisti

Abstract The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.


2017 ◽  
Vol 30 (4) ◽  
pp. 1327-1343 ◽  
Author(s):  
Ping Huang ◽  
Dong Chen

Abstract El Niño–Southern Oscillation (ENSO) is one of the most important sources of climate interannual variability. A prominent characteristic of ENSO is the asymmetric, or so-called nonlinear, local rainfall response to El Niño (EN) and La Niña (LN), in which the maximum rainfall anomalies during EN are located farther east than those during LN. In this study, the changes in rainfall anomalies during EN and LN are examined based on the multimodel ensemble mean results of 32 CMIP5 models under the representative concentration pathway 8.5 (RCP8.5) scenario. It is found that robust EN–LN asymmetric changes in rainfall anomalies exist. The rainfall anomalies during EN and LN both shift eastward and intensify under global warming, but the eastward shift during EN is farther east than that during LN. A simplified moisture budget decomposition method is applied to study the mechanism of the asymmetric response. The results show that the robust increase in mean-state moisture can enlarge the EN–LN asymmetry of the rainfall anomalies, and the spatial relative changes in mean-state SST with an El Niño–like pattern can shift the rainfall anomalies farther east during EN than during LN, enlarging the difference in the zonal locations of the rainfall response to EN and LN. The role of the relative changes in mean-state SST can also be interpreted as follows: the decreased zonal gradient of mean-state SST due to El Niño–like warming leads to a larger EN–LN asymmetry of rainfall anomalies under a future warming climate.


2011 ◽  
Vol 24 (20) ◽  
pp. 5423-5434 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines preindustrial simulations from Coupled Model Intercomparison Project, phase 3 (CMIP3), models to show that a tendency exists for El Niño sea surface temperature anomalies to be located farther eastward than La Niña anomalies during strong El Niño–Southern Oscillation (ENSO) events but farther westward than La Niña anomalies during weak ENSO events. Such reversed spatial asymmetries are shown to force a slow change in the tropical Pacific Ocean mean state that in return modulates ENSO amplitude. CMIP3 models that produce strong reversed asymmetries experience cyclic modulations of ENSO intensity, in which strong and weak events occur during opposite phases of a decadal variability mode associated with the residual effects of the reversed asymmetries. It is concluded that the reversed spatial asymmetries enable an ENSO–tropical Pacific mean state interaction mechanism that gives rise to a decadal modulation of ENSO intensity and that at least three CMIP3 models realistically simulate this interaction mechanism.


2020 ◽  
Vol 101 (4) ◽  
pp. E409-E426 ◽  
Author(s):  
Qiaohong Sun ◽  
Chiyuan Miao ◽  
Amir AghaKouchak ◽  
Iman Mallakpour ◽  
Duoying Ji ◽  
...  

Abstract Predicting the changes in teleconnection patterns and related hydroclimate extremes can provide vital information necessary to adapt to the effects of the El Niño–Southern Oscillation (ENSO). This study uses the outputs of global climate models to assess the changes in ENSO-related dry/wet patterns and the frequency of severe dry/wet events. The results show anomalous precipitation responding asymmetrically to La Niña and El Niño, indicating the teleconnections may not simply be strengthened. A “dry to drier, wet to wetter” annual anomalous precipitation pattern was projected during La Niña phases in some regions, with drier conditions over southern North America, southern South America, and southern central Asia, and wetter conditions in Southeast Asia and Australia. These results are robust, with agreement from the 26 models and from a subset of 8 models selected for their good performance in capturing observed patterns. However, we did not observe a similar strengthening of anomalous precipitation during future El Niño phases, for which the uncertainties in the projected influences are large. Under the RCP4.5 emissions scenario, 45 river basins under El Niño conditions and 39 river basins under La Niña conditions were predicted to experience an increase in the frequency of severe dry events; similarly, 59 river basins under El Niño conditions and 61 river basins under La Niña conditions were predicted to have an increase in the frequency of severe wet events, suggesting a likely increase in the risk of floods. Our results highlight the implications of changes in ENSO patterns for natural hazards, disaster management, and engineering infrastructure.


2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Yao Hu ◽  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Zheqi Shen ◽  
Ying Bao

We evaluated the influence of wind-induced waves on El Niño-Southern Oscillation (ENSO) simulations based on the First Institute of Oceanography-Earth System Model version 2 (FIO-ESM 2.0), a global coupled general circulation model (GCM) with a wave component. Two sets of experiments, the GCM, with and without a wave model, respectively, were conducted in parallel. The simulated sea surface temperature (SST) was cooled by introducing the wave model via the enhancement of the vertical mixing in the ocean upper layer. The strength of ENSO was intensified and better simulated with the inclusion of wave-induced mixing, particularly the La Niña amplitude. Furthermore, the simulated amplitude and spatial pattern of El Niño events were slightly altered with the wave model. Heat budget analyses revealed the intensification of La Niña events to be generally attributed to wave-induced vertical advection, followed by the zonal and meridional advection terms.


2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Sang‐Ki Lee ◽  
Dongmin Kim ◽  
Gregory R. Foltz ◽  
Hosmay Lopez
Keyword(s):  
La Niña ◽  
La Nina ◽  

2009 ◽  
Vol 22 (13) ◽  
pp. 3786-3801 ◽  
Author(s):  
Chi-Cherng Hong ◽  
Tim Li

Abstract A record-breaking, long-persisting extreme cold anomaly (ECA) over Southeast Asia, accompanied by an intraseasonal convection over the Maritime Continent, is identified during the La Niña mature phase in February 2008. The cause of the ECA, in particular the role of the intraseasonal oscillation (ISO) and El Niño–Southern Oscillation (ENSO) on the ECA, is investigated by diagnosing observations and conducting numerical experiments. The ECA is associated with an enhanced prolonged Siberian high (SH) and a persistent northerly anomaly over Southeast Asia. In contrast to conventional cold surges, which are characterized by a synoptic time scale (less than 10 days), the northerly anomaly associated with the ECA persisted for a month or so. The onset of the northerly anomaly is concurrent with a phase change of an ISO over Sumatra. Unlike the normal ISO that continues its eastward journey, the convection associated with this ISO stationed there during all of February 2008. Numerical experiments with an anomaly atmospheric GCM suggest that the ISO heating over the Maritime Continent is responsible for initiating and maintaining the northerly anomaly. The westward progression of the La Niña is crucial for blocking the ISO. The circulation and SST anomalies associated with the La Niña moved westward at a speed of about 15° longitude per month. By early February, the suppressed convective anomaly had moved to the far western Pacific. The westward shift of the cold episode prevented the ISO from moving farther eastward. In addition to its blocking effect, the La Niña also enhanced the heating over the Maritime Continent through the anomalous Walker circulation. Therefore, it is the combined effect of the ISO and ENSO that maintained a prolonged positive heating anomaly, which resulted in a persistent northerly anomaly and thus the ECA.


2021 ◽  
pp. 1
Author(s):  
Aoyun Xue ◽  
Wenjun Zhang ◽  
Julien Boucharel ◽  
Fei-Fei Jin

AbstractAlthough the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2021 ◽  
Vol 13 (14) ◽  
pp. 7987
Author(s):  
Mehmet Balcilar ◽  
Elie Bouri ◽  
Rangan Gupta ◽  
Christian Pierdzioch

We use the heterogenous autoregressive (HAR) model to compute out-of-sample forecasts of the monthly realized variance (RV) of movements of the spot and futures price of heating oil. We extend the HAR–RV model to include the role of El Niño and La Niña episodes, as captured by the Equatorial Southern Oscillation Index (EQSOI). Using data from June 1986 to April 2021, we show evidence for several model configurations that both El Niño and La Niña phases contain information useful for forecasting subsequent to the realized variance of price movements beyond the predictive value already captured by the HAR–RV model. The predictive value of La Niña phases, however, seems to be somewhat stronger than the predictive value of El Niño phases. Our results have important implications for investors, as well as from the perspective of sustainable decisions involving the environment.


Sign in / Sign up

Export Citation Format

Share Document