scholarly journals The Relationship between Tropical Cyclone Rainfall Area and Environmental Conditions over the Subtropical Oceans

2018 ◽  
Vol 31 (12) ◽  
pp. 4605-4616 ◽  
Author(s):  
Dasol Kim ◽  
Chang-Hoi Ho ◽  
Doo-Sun R. Park ◽  
Johnny C. L. Chan ◽  
Youngsun Jung

In this study, the variation of tropical cyclone (TC) rainfall area over the subtropical oceans is investigated using the Tropical Rainfall Measuring Mission precipitation data collected from 1998 to 2014, with a focus on its relationship with environmental conditions. In the subtropics, higher moving speed and larger vertical wind shear significantly contribute to an increase in TC rainfall area by making horizontal rainfall distribution more asymmetric, while sea surface temperature rarely affects the fluctuation of TC rainfall area. This relationship between TC rainfall area and environmental conditions in the subtropics is almost opposite to that in the tropics. It is suggested that, in the subtropics, unlike the tropics, dynamic environmental conditions are likely more crucial to varying TC rainfall area than thermodynamic environmental ones.

2013 ◽  
Vol 26 (12) ◽  
pp. 4204-4218 ◽  
Author(s):  
Kaya Kanemaru ◽  
Hirohiko Masunaga

Abstract The known characteristics of the relationship between sea surface temperature (SST) and column water vapor (CWV) are reevaluated with recent satellite observations over tropical and subtropical oceans. Satellite data acquired by the Aqua Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounder Unit (AMSU) suite, the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), and the Quick Scatterometer (QuikSCAT) SeaWinds are analyzed together for 7 years from October 2002 to September 2009. CWV is decomposed into surface humidity, presumably coupled closely to SST, and the water vapor scale height as an index of vertical moisture gradient between the boundary layer and the free troposphere. Surface relative humidity is climatologically homogeneous across tropical and subtropical oceans, while the dependence of CWV on SST varies from one region to another. SST mainly accounts for the variation of CWV with the water vapor scale height, which is virtually invariant over subtropical oceans. On the other hand, over tropical oceans, the variability of CWV is explained not only by SST but also by a systematic change of the water vapor scale height. The regional contrast between tropical and subtropical oceans is discussed in the context of the regional moisture budget including vertical moisture transport through convection.


2017 ◽  
Vol 56 (10) ◽  
pp. 2883-2901 ◽  
Author(s):  
Zifeng Yu ◽  
Yuqing Wang ◽  
Haiming Xu ◽  
Noel Davidson ◽  
Yandie Chen ◽  
...  

AbstractTRMM satellite 3B42 rainfall estimates for 133 landfalling tropical cyclones (TCs) over China during 2001–15 are used to examine the relationship between TC intensity and rainfall distribution. The rain rate of each TC is decomposed into axisymmetric and asymmetric components. The results reveal that, on average, axisymmetric rainfall is closely related to TC intensity. Stronger TCs have higher averaged peak axisymmetric rain rates, more averaged total rain, larger averaged rain areas, higher averaged rain rates, higher averaged amplitudes of the axisymmetric rainfall, and lower amplitudes of wavenumbers 1–4 relative to the total rainfall. Among different TC intensity change categories, rapidly decaying TCs show the most rapid decrease in both the total rainfall and the axisymmetric rainfall relative to the total rain. However, the maximum total rain, maximum rain area, and maximum rain rate are not absolutely dependent on TC intensity, suggesting that stronger TCs do not have systematically higher maximum rain rates than weaker storms. Results also show that the translational speed of TCs has little effect on the asymmetric rainfall distribution in landfalling TCs. The maximum rainfall of both the weaker and stronger TCs is generally located downshear to downshear left. However, when environmental vertical wind shear (VWS) is less than 5 m s−1, the asymmetric rainfall maxima are more frequently located upshear and onshore, suggesting that in weak VWS environments the coastline could have a significant effect on the rainfall asymmetry in landfalling TCs.


Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

AbstractIdealized numerical studies have suggested that in addition to vertical wind shear (VWS) magnitude, the VWS profile also affects tropical cyclone (TC) development. A way to further understand the VWS profile’s effect is to examine the interaction between a TC and various shear-relative low-level mean flow (LMF) orientations. This study mainly uses the ERA5 reanalysis to verify that, consistent with idealized simulations, boundary-layer processes associated with different shear-relative LMF orientations affect real-world TC’s intensity and size. Based on analyses of 720 TCs from multiple basins during 2004–2016, a TC affected by an LMF directed toward downshear-left in the Northern Hemisphere favors intensification, whereas an LMF directed toward upshear-right is favorable for expansion. Furthermore, physical processes associated with shear-relative LMF orientation may also partly explain the relationship between the VWS direction and TC development, as there is a correlation between the two variables.The analysis of reanalysis data provides other new insights. The relationship between shear-relative LMF and intensification is not significantly modified by other factors [inner-core sea surface temperature (SST), VWS magnitude, and relative humidity (RH)]. However, the relationship regarding expansion is partly attributed to environmental SST and RH variations for various LMF orientations. Moreover, SST is critical to the basin-dependent variability of the relationship between the shear-relative LMF and intensification. For Atlantic TCs, the relationship between LMF orientation and intensification is inconsistent with all-basin statistics unless the analysis is restricted to a representative subset of samples associated with generally favorable conditions.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Kaijun Ren ◽  
Xiaoyong Li ◽  
Guangjie Wang

The relationship between ocean subsurface temperature and tropical cyclone (TC) over the western North Pacific (WNP) is studied based on the TC best-track data and global reanalysis data during the period of 1948–2012. Here the TC frequency (TCF), lifespan, and genesis position of TCs are analysed. A distinctive negative correlation between subsurface water temperature and TCF is observed, especially the TCF in the southeastern quadrant of the WNP (0–15°N, 150–180°E). According to the detrended subsurface temperature anomalies of the 125 m depth layer in the main TC genesis area (0–30°N, 100–180°E), we selected the subsurface cold and warm years. During the subsurface cold years, TCs tend to have a longer mean lifespan and a more southeastern genesis position than the subsurface warm years in general. To further investigate the causes of this characteristic, the TC genesis potential indexes (GPI) are used to analyse the contributions of environmental factors to TC activities. The results indicate that the negative correlation between subsurface water temperature and TCF is mainly caused by the variation of TCF in the southeastern quadrant of the WNP, where the oceanic and atmospheric environments are related to ocean subsurface conditions. Specifically, compared with the subsurface warm years, there are larger relative vorticity, higher relative humidity, smaller vertical wind shear, weaker net longwave radiation, and higher ocean mixed layer temperature in the southeastern quadrant during cold years, which are all favorable for genesis and development of TC.


2019 ◽  
Vol 70 (10) ◽  
pp. 1445 ◽  
Author(s):  
Ana María Torres-Huerta ◽  
Ramón Andrés López-Pérez ◽  
Margarito Tapia-García ◽  
Adolfo Gracía

Information on the relationship between batoid demersal assemblages and environmental factors is scarce. We captured a total of 23414 batoids belonging to 16 species with bottom trawls at 243 sampling stations in the Gulf of Tehuantepec, Mexico. The species Urotrygon rogersi, Urotrygon chilensis and Narcine vermiculatus represented 70.1% of the abundance and 46.3% of the biomass. Five batoid assemblages were identified using hierarchical cluster and similarity profile analyses. Four assemblages were located at depths less than 40m and one assemblage was located at depths between 40 and 62m. The main batoid group was located in front of the most important lagoon complexes. The abundance biomass comparison method indicated that small species were dominant in terms of abundance in most assemblages. The set of environmental conditions and habitat characteristics (longitude, depth and sea surface temperature) present in the Gulf of Tehuantepec predicted important changes in the batoid community and affected its spatiotemporal distribution pattern.


2015 ◽  
Vol 28 (24) ◽  
pp. 9501-9506 ◽  
Author(s):  
Liguang Wu ◽  
Wei Tian ◽  
Qingyuan Liu ◽  
Jian Cao ◽  
John A. Knaff

Abstract Tropical cyclone (TC) size, usually measured with the radius of gale force wind (34 kt or 17 m s−1), is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Previous studies have reported that there is a very weak relationship between TC size and TC intensity. A close examination presented here using satellite-based wind analyses suggests that the relationship between TC size and intensity is nonlinear. TC size generally increases with increasing TC maximum sustained wind before a maximum of 2.50° latitude at an intensity of 103 kt or 53.0 m s−1 and then slowly decreases as the TC intensity further increases. The observed relationship between TC size and intensity is compared to the relationships produced by an 11-yr seasonal numerical simulation of TC activity. The numerical simulations were able to produce neither the observed maximum sustained winds nor the observed nonlinear relationship between TC size and intensity. This finding suggests that TC size cannot reasonably be simulated with 9-km horizontal resolution and increased resolution is needed to study TC size variations using numerical simulations.


Author(s):  
Benjamin A. Schenkel ◽  
Michael Coniglio ◽  
Roger Edwards

AbstractThis work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado-VWS relationship, these data are categorized by both: 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear right quadrant. Consistent with these patterns, drop-sondes and coastal radiosondes show that the downshear right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity further inland, these kinematic conditions are even more favorable in inland environments within the downshear right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland.


2017 ◽  
Vol 33 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Stephanie N. Stevenson ◽  
Kristen L. Corbosiero ◽  
Mark DeMaria ◽  
Jonathan L. Vigh

Abstract This study seeks to reconcile discrepancies between previous studies analyzing the relationship between lightning and tropical cyclone (TC) intensity change. Inner-core lightning bursts (ICLBs) were identified from 2005 to 2014 in North Atlantic (NA) and eastern North Pacific (ENP) TCs embedded in favorable environments (e.g., vertical wind shear ≤ 10 m s−1; sea surface temperatures ≥ 26.5°C) using data from the World Wide Lightning Location Network (WWLLN) transformed onto a regular grid with 8-km grid spacing to replicate the expected nadir resolution of the Geostationary Lightning Mapper (GLM). Three hypothesized factors that could impact the 24-h intensity change after a burst were tested: 1) prior intensity change, 2) azimuthal burst location, and 3) radial burst location. Most ICLBs occurred in weak TCs (tropical depressions and tropical storms), and most TCs intensified (remained steady) 24 h after burst onset in the NA (ENP). TCs were more likely to intensify 24 h after an ICLB if they were steady or intensifying prior to burst onset. Azimuthally, 75% of the ICLBs initiated downshear, with 92% of downshear bursts occurring in TCs that remained steady or intensified. Of the ICLBs that initiated or rotated upshear, 2–3 times more were associated with TC intensification than weakening, consistent with recent studies finding more symmetric convection in intensifying TCs. The radial burst location relative to the radius of maximum wind (RMW) provided the most promising result: TCs with an ICLB inside (outside) the RMW were associated with intensification (weakening).


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 501
Author(s):  
Mengying Shi ◽  
Sulei Wang ◽  
Xiaoxu Qi ◽  
Haikun Zhao ◽  
Yu Shu

In November 2019, tropical cyclone (TC) frequency over the western North Pacific reached its record high. In this study, the possible causes and formation mechanisms of that record high TC frequency are investigated by analyzing the effect of large-scale environmental factors. A comparison between the extremely active TC years and extremely inactive TC years is performed to show the importance of the large-scale environment. The contributions of several dynamic and thermodynamic environmental factors are examined on the basis of two genesis potential indexes and the box difference index that can measure the relative contributions of large-scale environmental factors to the change in TC genesis frequency. Results indicate that dynamical factors played a more important role in TC genesis in November 2019 than thermodynamic factors. The main contributions were from enhanced low-level vorticity and strong upward motion accompanied by positive anomalies in local sea surface temperature, while the minor contribution was from changes in vertical wind shear. Changes in these large-scale environmental factors are possibly related to sea surface temperature anomalies over the Pacific (e.g., strong Pacific meridional mode).


Sign in / Sign up

Export Citation Format

Share Document