scholarly journals Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring

2018 ◽  
Vol 31 (14) ◽  
pp. 5371-5393 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Diego G. Miralles ◽  
Fernando Domínguez-Castro ◽  
Cesar Azorin-Molina ◽  
Ahmed El Kenawy ◽  
...  

This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations ( p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.

2021 ◽  
Author(s):  
Sifang Feng ◽  
Zengchao Hao

&lt;p&gt;Compound dry and hot events (CDHEs) are commonly defined as the concurrent or consecutive occurrences of the two events, which could lead to larger negative impacts than do individual extremes. The variation of CDHEs has gained increased attention in the past decades. Previous studies have detected changes in the frequency, duration, and spatial extent at regional and global scales based on observations and model simulations. However, these studies mainly focus on a single drought indicator. In the past decades, different drought indicators have been applied to characterize drought conditions, such as Standardized Precipitation Index (SPI), and Standardized Precipitation-Evapotranspiration Index (SPEI), and Palmer Drought Severity Index (PDSI). Due to the difference in these drought indicators in characterizing droughts, evaluation of CDHEs based on different drought indices may lead to a different magnitude of changes (or even opposite direction of changes). However, quantitative analysis of the uncertainties in the variation of CDHEs is still lacking. In this study, we quantitatively evaluate the uncertainties of CDHEs variations ove global areas due to differences in drought indices. Results from this study could further our understanding of changes in CDHEs under global warming.&lt;/p&gt;


Abstract Recent years have seen growing appreciation that rapidly intensifying “flash droughts” are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility-based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the Contiguous United States (CONUS) for the period 1979-2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture “flash droughts” are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways.


2013 ◽  
Vol 26 (12) ◽  
pp. 4000-4016 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land–ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land–ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K. The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50° when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land–ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land–ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.


2019 ◽  
Vol 50 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Christine Holyfield ◽  
Sydney Brooks ◽  
Allison Schluterman

Purpose Augmentative and alternative communication (AAC) is an intervention approach that can promote communication and language in children with multiple disabilities who are beginning communicators. While a wide range of AAC technologies are available, little is known about the comparative effects of specific technology options. Given that engagement can be low for beginning communicators with multiple disabilities, the current study provides initial information about the comparative effects of 2 AAC technology options—high-tech visual scene displays (VSDs) and low-tech isolated picture symbols—on engagement. Method Three elementary-age beginning communicators with multiple disabilities participated. The study used a single-subject, alternating treatment design with each technology serving as a condition. Participants interacted with their school speech-language pathologists using each of the 2 technologies across 5 sessions in a block randomized order. Results According to visual analysis and nonoverlap of all pairs calculations, all 3 participants demonstrated more engagement with the high-tech VSDs than the low-tech isolated picture symbols as measured by their seconds of gaze toward each technology option. Despite the difference in engagement observed, there was no clear difference across the 2 conditions in engagement toward the communication partner or use of the AAC. Conclusions Clinicians can consider measuring engagement when evaluating AAC technology options for children with multiple disabilities and should consider evaluating high-tech VSDs as 1 technology option for them. Future research must explore the extent to which differences in engagement to particular AAC technologies result in differences in communication and language learning over time as might be expected.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


2021 ◽  
Vol 13 (7) ◽  
pp. 1340
Author(s):  
Shuailong Feng ◽  
Shuguang Liu ◽  
Lei Jing ◽  
Yu Zhu ◽  
Wende Yan ◽  
...  

Highways provide key social and economic functions but generate a wide range of environmental consequences that are poorly quantified and understood. Here, we developed a before–during–after control-impact remote sensing (BDACI-RS) approach to quantify the spatial and temporal changes of environmental impacts during and after the construction of the Wujing Highway in China using three buffer zones (0–100 m, 100–500 m, and 500–1000 m). Results showed that land cover composition experienced large changes in the 0–100 m and 100–500 m buffers while that in the 500–1000 m buffer was relatively stable. Vegetation and moisture conditions, indicated by the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI), respectively, demonstrated obvious degradation–recovery trends in the 0–100 m and 100–500 m buffers, while land surface temperature (LST) experienced a progressive increase. The maximal relative changes as annual means of NDVI, NDMI, and LST were about −40%, −60%, and 12%, respectively, in the 0–100m buffer. Although the mean values of NDVI, NDMI, and LST in the 500–1000 m buffer remained relatively stable during the study period, their spatial variabilities increased significantly after highway construction. An integrated environment quality index (EQI) showed that the environmental impact of the highway manifested the most in its close proximity and faded away with distance. Our results showed that the effect distance of the highway was at least 1000 m, demonstrated from the spatial changes of the indicators (both mean and spatial variability). The approach proposed in this study can be readily applied to other regions to quantify the spatial and temporal changes of disturbances of highway systems and subsequent recovery.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


Religions ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 389
Author(s):  
James Robert Brown

Religious notions have long played a role in epistemology. Theological thought experiments, in particular, have been effective in a wide range of situations in the sciences. Some of these are merely picturesque, others have been heuristically important, and still others, as I will argue, have played a role that could be called essential. I will illustrate the difference between heuristic and essential with two examples. One of these stems from the Newton–Leibniz debate over the nature of space and time; the other is a thought experiment of my own constructed with the aim of making a case for a more liberal view of evidence in mathematics.


2019 ◽  
Vol 12 (11) ◽  
pp. 4661-4679 ◽  
Author(s):  
Bin Cao ◽  
Xiaojing Quan ◽  
Nicholas Brown ◽  
Emilie Stewart-Jones ◽  
Stephan Gruber

Abstract. Simulations of land-surface processes and phenomena often require driving time series of meteorological variables. Corresponding observations, however, are unavailable in most locations, even more so, when considering the duration, continuity and data quality required. Atmospheric reanalyses provide global coverage of relevant meteorological variables, but their use is largely restricted to grid-based studies. This is because technical challenges limit the ease with which reanalysis data can be applied to models at the site scale. We present the software toolkit GlobSim, which automates the downloading, interpolation and scaling of different reanalyses – currently ERA5, ERA-Interim, JRA-55 and MERRA-2 – to produce meteorological time series for user-defined point locations. The resulting data have consistent structure and units to efficiently support ensemble simulation. The utility of GlobSim is demonstrated using an application in permafrost research. We perform ensemble simulations of ground-surface temperature for 10 terrain types in a remote tundra area in northern Canada and compare the results with observations. Simulation results reproduced seasonal cycles and variation between terrain types well, demonstrating that GlobSim can support efficient land-surface simulations. Ensemble means often yielded better accuracy than individual simulations and ensemble ranges additionally provide indications of uncertainty arising from uncertain input. By improving the usability of reanalyses for research requiring time series of climate variables for point locations, GlobSim can enable a wide range of simulation studies and model evaluations that previously were impeded by technical hurdles in obtaining suitable data.


Sign in / Sign up

Export Citation Format

Share Document