scholarly journals A Systematic Comparison of Tropical Waves over Northern Africa. Part I: Influence on Rainfall

2019 ◽  
Vol 32 (5) ◽  
pp. 1501-1523 ◽  
Author(s):  
Andreas Schlueter ◽  
Andreas H. Fink ◽  
Peter Knippertz ◽  
Peter Vogel

Abstract Low-latitude rainfall variability on the daily to intraseasonal time scale is often related to tropical waves, including convectively coupled equatorial waves, the Madden–Julian oscillation (MJO), and tropical disturbances (TDs). Despite the importance of rainfall variability for vulnerable societies in tropical Africa, the relative influence of tropical waves for this region is largely unknown. This article presents the first systematic comparison of the impact of six wave types on precipitation over northern tropical Africa during the transition and full monsoon seasons, using two satellite products and a dense rain gauge network. Composites of rainfall anomalies in the different datasets show comparable modulation intensities in the West Sahel and at the Guinea Coast, varying from less than 2 to above 7 mm day−1 depending on the wave type. African easterly waves (AEWs) and Kelvin waves dominate the 3-hourly to daily time scale and explain 10%–30% locally. On longer time scales (7–20 days), only the MJO and equatorial Rossby (ER) waves remain as modulating factors and explain about up to one-third of rainfall variability. Eastward inertio-gravity waves and mixed Rossby–gravity (MRG) waves are comparatively unimportant. An analysis of wave superposition shows that low-frequency waves (MJO, ER) in their wet phase amplify the activity of high-frequency waves (TD, MRG) and suppress them in the dry phase. The results stress that more attention should be paid to tropical waves when forecasting rainfall over northern tropical Africa.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jaka A. I. Paski ◽  
Furqon Alfahmi ◽  
Donaldi S. Permana ◽  
Erwin E. S. Makmur

Extreme rainfall accompanied by strong winds hit the province of Bengkulu in the western coastal area of Sumatera Island during September 19-20, 2017, causing floods and landslides in Seluma and Central Bengkulu district. This extreme rainfall was recorded by Bengkulu Meteorological Station about 257.0 mm day−1 using rain-gauge observation. The spatial distribution of extreme rainfall cannot be seen if only using a rain-gauge observation in this location. The spatial distribution of extreme rainfall is needed to identify the impact of rainfall on landslides in large areas. The study aims to (1) develop the reconstruction of the spatial distribution of extreme rainfall using weather radar and (2) investigate the trigger that caused extreme rainfall by analyzing the synoptic-scale tropical waves. Each weather radar datum is saved in a Constant Altitude Plan Position Indicator (CAPPI). To get rainfall information, the CAPPI must be derived from Quantitative Precipitation Estimation (QPE) values. In this paper, we derived CAPPI using a Marshall-Palmer reflectivity-rain rate relationship. The result shows that rainfall formed on September 20, 2017, 21.00 UTC with total daily rainfall ranged between 176 and 247 mm in both districts and the mean of total daily rainfall has exceeded the average of monthly rainfall. The analysis of tropical waves suggests that only Kelvin waves were active and served as a possible trigger factor while the Madden-Julian Oscillation (MJO) and Equatorial Rossby (ER) waves were inactive during this extreme rainfall.


2019 ◽  
Vol 32 (9) ◽  
pp. 2605-2625 ◽  
Author(s):  
Andreas Schlueter ◽  
Andreas H. Fink ◽  
Peter Knippertz

AbstractThis study presents the first systematic comparison of the dynamics and thermodynamics associated with all major tropical wave types causing rainfall modulation over northern tropical Africa: the Madden–Julian oscillation (MJO), equatorial Rossby waves (ERs), tropical disturbances (TDs, including African easterly waves), Kelvin waves, mixed Rossby–gravity waves (MRGs), and eastward inertio-gravity waves (EIGs). Reanalysis and radiosonde data were analyzed for the period 1981–2013 based on space–time filtering of outgoing longwave radiation. The identified circulation patterns are largely consistent with theory. The slow modes, MJO and ER, mainly impact precipitable water, whereas the faster TDs, Kelvin waves, and MRGs primarily modulate moisture convergence. Monsoonal inflow intensifies during wet phases of the MJO, ERs, and MRGs, associated with a northward shift of the intertropical discontinuity for MJO and ERs. This study reveals that MRGs over Africa have a distinct dynamical structure that differs significantly from AEWs. During passages of vertically tilted imbalanced wave modes, such as the MJO, TDs, Kelvin waves, and partly MRG waves, increased vertical wind shear and improved conditions for up- and downdrafts facilitate the organization of mesoscale convective systems. The balanced ERs are not tilted, and rainfall is triggered by large-scale moistening and stratiform lifting. The MJO and ERs interact with intraseasonal variations of the Indian monsoon and extratropical Rossby wave trains. The latter causes a trough over the Atlas Mountains associated with a tropical plume and rainfall over the Sahara. The presented results unveil which dynamical processes need to be modeled realistically to represent the coupling between tropical waves and rainfall in northern tropical Africa.


2013 ◽  
Vol 10 (1) ◽  
pp. 1-32
Author(s):  
N. Peleg ◽  
M. Ben-Asher ◽  
E. Morin

Abstract. Hydrological models for runoff estimations and flash-flood predictions are very sensitive to rainfall's spatial and temporal variability. The increasing use of radar and satellite data in hydrological applications, due to the sparse distribution of rain gauges over most catchments worldwide, requires improving our knowledge of the uncertainties of these data. In 2011, a new super-dense network of rain gauges, containing 27 gauges covering an area of about 4 km2, was installed near Kibbutz Galed in northern Israel. This network was established for a detailed exploration of the uncertainties and errors regarding rainfall variability in remote-sensing at subpixel-scale resolution. In this paper, we present the analysis of the first year's record collected from this network and from the Shacham weather radar. The gauge–rainfall spatial correlation and uncertainty were examined along with the estimated radar error. The zero-distance correlation between rain gauges was high (0.92 on the 1-min scale) and increased as the time scale increased. The variance of the differences between radar pixel rainfall and averaged point rainfall (the variance reduction factor – VRF) was 1.6%, as measured for the 1-min scale. It was also found that at least four uniformly distributed rain stations are needed to represent the rainfall on the radar pixel scale. The radar–rain gauge error was mainly derived from radar estimation errors as the gauge sampling error contributed up to 22% to the total error. The radar rainfall estimations improved with increasing time scale and the radar-to-true rainfall ratio decreased with increasing time scale. Rainfall measurements collected with this network of rain gauges in the coming years will be used for further examination of rainfall's spatial and temporal variability.


Author(s):  
Guilherme Borzacchiello ◽  
Carl Albrecht ◽  
Fabricio N Correa ◽  
Breno Jacob ◽  
Guilherme da Silva Leal

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


2021 ◽  
Vol 13 (8) ◽  
pp. 1485
Author(s):  
Naveen Ramachandran ◽  
Sassan Saatchi ◽  
Stefano Tebaldini ◽  
Mauro Mariotti d’Alessandro ◽  
Onkar Dikshit

Low-frequency tomographic synthetic aperture radar (TomoSAR) techniques provide an opportunity for quantifying the dynamics of dense tropical forest vertical structures. Here, we compare the performance of different TomoSAR processing, Back-projection (BP), Capon beamforming (CB), and MUltiple SIgnal Classification (MUSIC), and compensation techniques for estimating forest height (FH) and forest vertical profile from the backscattered echoes. The study also examines how polarimetric measurements in linear, compact, hybrid, and dual circular modes influence parameter estimation. The tomographic analysis was carried out using P-band data acquired over the Paracou study site in French Guiana, and the quantitative evaluation was performed using LiDAR-based canopy height measurements taken during the 2009 TropiSAR campaign. Our results show that the relative root mean squared error (RMSE) of height was less than 10%, with negligible systematic errors across the range, with Capon and MUSIC performing better for height estimates. Radiometric compensation, such as slope correction, does not improve tree height estimation. Further, we compare and analyze the impact of the compensation approach on forest vertical profiles and tomographic metrics and the integrated backscattered power. It is observed that radiometric compensation increases the backscatter values of the vertical profile with a slight shift in local maxima of the canopy layer for both the Capon and the MUSIC estimators. Our results suggest that applying the proper processing and compensation techniques on P-band TomoSAR observations from space will allow the monitoring of forest vertical structure and biomass dynamics.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Jianpeng Ma ◽  
Shi Zhuo ◽  
Chengwei Li ◽  
Liwei Zhan ◽  
Guangzhu Zhang

When early failures in rolling bearings occur, we need to be able to extract weak fault characteristic frequencies under the influence of strong noise and then perform fault diagnosis. Therefore, a new method is proposed: complete ensemble intrinsic time-scale decomposition with adaptive Lévy noise (CEITDALN). This method solves the problem of the traditional complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN) method not being able to filter nonwhite noise in measured vibration signal noise. Therefore, in the method proposed in this paper, a noise model in the form of parameter-adjusted noise is used to replace traditional white noise. We used an optimization algorithm to adaptively adjust the model parameters, reducing the impact of nonwhite noise on the feature frequency extraction. The experimental results for the simulation and vibration signals of rolling bearings showed that the CEITDALN method could extract weak fault features more effectively than traditional methods.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Ilaria Sesia ◽  
Giovanna Signorile ◽  
Tung Thanh Thai ◽  
Pascale Defraigne ◽  
Patrizia Tavella

AbstractWe present two different approaches to broadcasting information to retrieve the GNSS-to-GNSS time offsets needed by users of multi-GNSS signals. Both approaches rely on the broadcast of a single time offset of each GNSS time versus one common time scale instead of broadcasting the time offsets between each of the constellation pairs. The first common time scale is the average of the GNSS time scales, and the second time scale is the prediction of UTC already broadcast by the different systems. We show that the average GNSS time scale allows the estimation of the GNSS-to-GNSS time offset at the user level with the very low uncertainty of a few nanoseconds when the receivers at both the provider and user levels are fully calibrated. The use of broadcast UTC prediction as a common time scale has a slightly larger uncertainty, which depends on the broadcast UTC prediction quality, which could be improved in the future. This study focuses on the evaluation of two different common time scales, not considering the impact of receiver calibration, at the user and provider levels, which can nevertheless have an important impact on GNSS-to-GNSS time offset estimation.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2058 ◽  
Author(s):  
Larissa Rolim ◽  
Francisco de Souza Filho

Improved water resource management relies on accurate analyses of the past dynamics of hydrological variables. The presence of low-frequency structures in hydrologic time series is an important feature. It can modify the probability of extreme events occurring in different time scales, which makes the risk associated with extreme events dynamic, changing from one decade to another. This article proposes a methodology capable of dynamically detecting and predicting low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum. The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part of the results, the regime shifts detected by the BFAST approach are not entirely consistent with results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the construction of the reservoir. Climate variability modulates the streamflow low-frequency variability, and anthropogenic activities and climate change can modify this modulation. The identification of shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency variability conditions the flows of a given year.


Sign in / Sign up

Export Citation Format

Share Document