scholarly journals Strong Dependence of Wintertime Arctic Moisture and Cloud Distributions on Atmospheric Large-Scale Circulation

2019 ◽  
Vol 32 (24) ◽  
pp. 8771-8790 ◽  
Author(s):  
Tiina Nygård ◽  
Rune G. Graversen ◽  
Petteri Uotila ◽  
Tuomas Naakka ◽  
Timo Vihma

Abstract This study gives a comprehensive picture of how atmospheric large-scale circulation is related to moisture transport and to distributions of moisture, clouds, and surface downward longwave radiation in the Arctic in winter. Anomaly distributions of the abovementioned variables are compared in 30 characteristic wintertime atmospheric circulation regimes, which are allocated from 15 years (2003–17) of mean sea level pressure data of ERA-Interim reanalysis applying the self-organizing map method. The characteristic circulation regimes are further related to known climate indices—the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and Greenland blocking index—as well as to a frequent high pressure pattern across the Arctic Ocean from Siberia to North America, herein called the Arctic bridge. Effects of large-scale circulation on moisture, cloud, and longwave radiation are to a large extent occurring through the impact of horizontal moisture transport. Evaporation is typically not efficient enough to shape those distributions, and much of the moisture evaporated in the Arctic is transported southward. The positive phase of the NAO and AO increases moisture and clouds in northern Europe and the eastern North Atlantic Ocean, and a strong Greenland blocking typically increases those in the southwest of Greenland. When the Arctic bridge is lacking, the amount of moisture, clouds, and downward longwave radiation is anomalously high near the North Pole. Our results reveal a strong dependence of moisture, clouds, and longwave radiation on atmospheric pressure fields, which also appears to be important from a climate change perspective.

2021 ◽  
Author(s):  
Lukas Papritz ◽  
David Hauswirth ◽  
Katharina Hartmuth

Abstract. Poleward moisture transport occurs in episodic, high-amplitude events with strong impacts on the Arctic and its climate system components such as sea ice. This study focuses on the origin of such events and examines the moisture sources, moisture transport pathways, and their linkage to the large-scale circulation. For that purpose, 597 events of intense zonal mean poleward moisture transport at 70° N (exceeding the 90th anomaly percentile) are identified and kinematic backward trajectories from 70° N are computed to pinpoint the moisture sources and characterize the air-streams accomplishing the transport. The bulk of the moisture transported into the polar cap during these events originates in the eastern North Atlantic with an uptake maximum poleward of 50° N. This asymmetry between ocean basins is a direct consequence of the fact that most of the moisture transport into the polar cap occurs in this sector. As a result of the fairly high-latitude origin of the moisture, the median time moisture spends in the atmosphere prior to reaching 70° N amounts to about 2.5 days. Trajectories further reveal an inverse relationship between moisture uptake latitude and the level at which moisture is injected into the polar cap, consistent with ascent of poleward flowing air in a baroclinic atmosphere. Focusing on events for which 75 % of the zonal mean moisture transport takes place in the North Atlantic east of Greenland (424 events) reveals that lower tropospheric moisture transport results predominantly from two types of air-streams: (i) cold, polar air advected from the Canadian Arctic over the North Atlantic and around Greenland, whereby the air is warmed and moistened by surface fluxes, and (ii) air subsiding from the mid-troposphere into the boundary layer. Both air-streams contribute about 36 % each to the total transport. The former dominates the moisture transport during events associated with an anomalously high frequency of cyclones east of Greenland (218 events), whereas the latter is more important in the presence of atmospheric blocking over Scandinavia and the Ural (145 events). A substantial portion of the moisture sources associated with both types of air-streams are located between Iceland, the British Isles, and Norway. Long-range moisture transport, accounting for 17 % of the total transport, is the dominant type of air-stream during events with weak forcing by baroclinic weather systems (64 events). Finally, mid-tropospheric moisture transport is invariably associated with (diabatically) ascending air and moisture origin in the central and western North Atlantic, including the Gulf Stream front, accounting for roughly 10 % of the total transport. In summary, our study reveals that moisture injections into the polar atmosphere are not primarily caused by the poleward transport of warm and humid air from low latitudes – a conclusion that applies in particular to cases where the transport is driven by baroclinic weather systems such as extratropical cyclones. Instead, it results from a combination of air-streams with pre-dominantly high-latitude or high-altitude origin and their interplay with large-scale weather systems (e.g., cyclones, blocks).


2021 ◽  
Author(s):  
Ryan Love ◽  
Heather Andres ◽  
Alan Condron ◽  
Lev Tarasov

Abstract. Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial to millennial scale climate variability such as the Younger Dryas and Dansgaard-Oeschger Events. Indeed, freshwater injection/hosing experiments with climate models have long shown that freshwater has the capability of generating such abrupt climate transitions. However, the relationship between freshwater and abrupt climate transitions is not straightforward. Large-scale glacial runoff events, such as Meltwater Pulse 1A, are not always temporally proximal to subsequent large-scale cooling. As well, the typical design of hosing experiments tends to artificially amplify the climate response. This study explores the impact that limitations in the representation of runoff in conventional hosing simulations has on our understanding of this relationship and addresses the more fundamental question of where coastally released freshwater is transported when it reaches the ocean. We focus particularly on the prior use of excessive freshwater volumes (often by a factor of 5) and present-day (rather than paleo) ocean gateways, as well as the injection of freshwater directly over sites of deep-water formation (DWF) rather than at runoff locations. We track the routing of glaciologically-constrained freshwater volumes from four different plausible injection locations in a suite of eddy-permitting glacial ocean simulations using MITGCM under both open and closed Bering Strait conditions. Restricting freshwater forcing values to realistic ranges results in less spreading of freshwater across the North Atlantic and indicates that the response of DWF depends strongly on the geographical location of meltwater input. In particular, freshwater released into the Gulf of Mexico has little impact on DWF regions as a result of turbulent mixing by the Gulf Stream. In contrast, freshwater released from the Eurasian Ice sheet or initially into the Arctic is found to have the largest impact on DWF in the North Atlantic and GIN seas. Additional experiments show that when the Bering Strait is open, much like present-day, the Mackenzie River source exhibits twice as much freshening of the Labrador sea as a closed Bering Strait. Finally, our results illustrate that applying a freshwater hosing directly into the North Atlantic with even realistic freshwater amounts still over-estimates the effect of terrestrial runoff on ocean circulation.


2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


2005 ◽  
Vol 18 (19) ◽  
pp. 4032-4045 ◽  
Author(s):  
Nikolaus Groll ◽  
Martin Widmann ◽  
Julie M. Jones ◽  
Frank Kaspar ◽  
Stephan J. Lorenz

Abstract To investigate relationships between large-scale circulation and regional-scale temperatures during the last (Eemian) interglacial, a simulation with a general circulation model (GCM) under orbital forcing conditions of 125 kyr BP is compared with a simulation forced with the Late Holocene preindustrial conditions. Consistent with previous GCM simulations for the Eemian, higher northern summer 2-m temperatures are found, which are directly related to the different insolation. Differences in the mean circulation are evident such as, for instance, stronger northern winter westerlies toward Europe, which are associated with warmer temperatures in central and northeastern Europe in the Eemian simulation, while the circulation variability, analyzed by means of a principal component analysis of the sea level pressure (SLP) field, is very similar in both periods. As a consequence of the differences in the mean circulation the simulated Arctic Oscillation (AO) temperature signal in the northern winter, on interannual-to-multidecadal time scales, is weaker during the Eemian than today over large parts of the Northern Hemisphere. Correlations between the AO index and the central European temperature (CET) decrease by about 0.2. The winter and spring SLP anomalies over the North Atlantic/European domain that are most strongly linearly linked to the CET cover a smaller area and are shifted westward over the North Atlantic during the Eemian. However, the strength of the connection between CET and these SLP anomalies is similar in both simulations. The simulated differences in the AO temperature signal and in the SLP anomaly, which is linearly linked to the CET, suggest that during the Eemian the link between the large-scale circulation and temperature-sensitive proxy data from Europe may differ from present-day conditions and that this difference should be taken into account when inferring large-scale climate from temperature-sensitive proxy data.


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


2019 ◽  
Vol 19 (6) ◽  
pp. 3927-3937 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic amplification causes the meridional temperature gradient between middle and high latitudes to decrease. Through this decrease the large-scale circulation in the midlatitudes may change and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal transports and their changes in time, we analysed ERA-Interim daily winter data of vertically integrated horizontal moist static energy transport using self-organizing maps (SOMs). Three general transport pathways have been identified: the North Atlantic pathway with transport mainly over the northern Atlantic, the North Pacific pathway with transport from the Pacific region, and the Siberian pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected to negative temperature anomalies over the central Arctic. These North Pacific pathways have been becoming less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favour transport through the North Atlantic into the central Arctic are connected to positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic–cold continents pattern. Further, it could be shown that transport through the North Atlantic has been becoming more frequent during the last decades.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2020 ◽  
Author(s):  
kunhui Ye ◽  
Gabriele Messori

<p>The wintertime warm Arctic-cold Eurasia (WACE) temperature trend during 1990-2010 was characterized by accelerating warming in the Arctic region, cooling in Eurasia and accelerating autumn/winter Arctic sea ice loss. We identify two atmospheric circulation modes over the North Atlantic-Northern Eurasian sector which displayed strong upward trends over the same period and can explain a large part of the observed decadal WACE pattern. Both modes bear a close resemblance to well-known teleconnection patterns and are relatively independent from anomalies in Arctic sea-ice cover. The first mode (PC1) captures the recent negative trends in the North Atlantic Oscillation and increased Greenland blocking frequency while the second mode (PC2) is reminiscent of a Rossby wave train and reflects an increased blocking frequency over the Urals and North Asia. We find that the loss in the Arctic sea ice and the upward trends in the PC1/PC2 together account for most of the decadal Arctic warming trend (>80%). However, the decadal Eurasian cooling trends may be primarily ascribed to the two circulation modes alone: all of the cooling in Siberia is contributed to by the PC1, and 65% of the cooling in East Asia by their combination (the contribution by PC2 doubles that by PC1). Enhanced intraseasonal activity of the two circulation modes increases blocking frequencies over Greenland, the Ural region and North Asia, which drive anomalous moisture/heat flux towards the Arctic and alter the downward longwave radiation. It weakens warm advection and enhances advection of Arctic cold airmass towards Eurasia.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Vladimir Maderich ◽  
Kyeong Ok Kim ◽  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vazira Martazinova ◽  
...  

The North Atlantic and Arctic oceans, along with the North Pacific, are the main reservoirs of anthropogenic radionuclides introduced in the past 75 years. The POSEIDON-R compartment model was applied to the North Atlantic and Arctic oceans to reconstruct 137Cs contamination in 1945–2020 due to multiple sources: global fallout, exchange flows with other oceans, point-source inputs in the ocean from reprocessing plants and other nuclear facilities, the impact of the Chernobyl accident and secondary contamination resulting from river runoff and redissolution from bottom sediments. The model simulated the marine environment as a system of 3D compartments comprising the water column, bottom sediment, and biota. The dynamic model described the transfer of 137Cs through the pelagic and benthic food chains. The simulation results were validated using the marine database MARIS. The calculated concentrations of 137Cs in the seaweed and non-piscivorous and piscivorous pelagic fish mostly followed the concentration of 137Cs in water. The concentration in coastal predator fish lagged behind the concentration in water as a result of a diet that includes both pelagic and benthic organisms. The impact of each considered source on the total concentration of 137Cs in non-piscivorous fish in the regions of interest was analyzed. Whereas the contribution from global fallout dominated in 1960–1970, in 1970–1990, the contribution of 137Cs released from reprocessing plants exceeded the contributions from other sources in almost all considered regions. Secondary contamination due to river runoff was less than 4% of ocean influx. The maximum total inventory of 137Cs in the Arctic Ocean (31,122 TBq) was reached in 1988, whereas the corresponding inventory in the bottom sediment was approximately 6% of the total. The general agreement between simulated and observed 137Cs concentrations in water and bottom sediment was confirmed by the estimates of geometric mean and geometric standard deviation, which varied from 0.89 to 1.29 and from 1.22 to 1.87, respectively. The approach used is useful to synthesize measurement and simulation data in areas with observational gaps. For this purpose, 13 representative regions in the North Atlantic and Arctic oceans were selected for monitoring by using the “etalon” method for classification.


2021 ◽  
Author(s):  
Won-il Lim ◽  
Hyo-Seok Park ◽  
Andrew Stewart ◽  
Kyong-Hwan Seo

Abstract The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the art sea ice models, we show that typical winter snowfall anomalies of 1.0 cm, accompanied by positive downward longwave radiation anomalies of ~5 W m-2 can decrease sea ice thickness by around 5 cm in the following spring over the Eurasian Seas. This basin-wide ice thinning is followed by a shrinking of summer ice extent in extreme cases. In the winter of 2016–17, anomalously strong warm/moist air transport combined with ~2.5 cm increase in snowfall decreased spring ice thickness by ~10 cm and decreased the following summer sea ice extent by 5–30%. Projected future reductions in the thickness of Arctic sea ice and snow will amplify the impact of anomalous winter snowfall events on winter sea ice growth and seasonal sea ice thickness.


Sign in / Sign up

Export Citation Format

Share Document