scholarly journals Excessive ITCZ but Negative SST Biases in the Tropical Pacific Simulated by CMIP5/6 Models: The Role of the Meridional Pattern of SST Bias

2020 ◽  
Vol 33 (12) ◽  
pp. 5305-5316 ◽  
Author(s):  
Shijie Zhou ◽  
Gang Huang ◽  
Ping Huang

AbstractIn phases 5 and 6 of the state-of-the-art Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively) models, there is an apparent excessive rainfall bias with a negative SST bias in the tropical Pacific intertropical convergence zone (ITCZ). The regime of the excessive ITCZ but negative SST bias is inconsistent with the common positive rainfall–SST correlation of climate anomalies over the tropics. Using a two-mode model, we decomposed the rainfall bias into two components and found that the surface convergence (SC) bias is the key factor forming the excessive ITCZ bias in the historical runs of 25 CMIP5 models and 23 CMIP6 models. A mixed layer model was further applied to connect the formation of the SC bias with the SST pattern bias. The results suggest that the meridional pattern of the SST bias plays a key role in forming the SC bias. In the CMIP5 and CMIP6 models, the overall negative SST bias has two apparent meridional troughs at around 10°S and 10°N, respectively. The two meridional troughs in the SST bias drive two convergence centers in the SC bias favoring the excessive ITCZ, even though the local SST bias is negative.

2020 ◽  
Author(s):  
Ping Huang

<p>In the state-of-the-art CMIP5/6 models, there is an apparent excessive rainfall bias with a negative SST bias in the tropical Pacific intertropical convergence zone (ITCZ). The regime of the excessive ITCZ but negative SST bias is inconsistent with the common positive rainfall–SST correlation. Using a two-mode model, we decomposed the rainfall bias into two components, and found that the surface convergence (SC) bias is the key factor forming the excessive ITCZ bias in the historical runs of 25 CMIP5 models and 23 CMIP6 models. A mixed layer model was further applied to connect the formation of the SC bias with the SST pattern bias. The results suggest that the meridional pattern of the SST bias plays a key role in forming the SC bias. In the CMIP5/6 models, the overall negative SST bias has two apparent meridional troughs at around 10°S and 10°N, respectively. The two meridional troughs in the SST bias drive two convergence centers in the SC bias favoring the excessive ITCZ, even though the local SST bias is negative.</p>


2016 ◽  
Vol 29 (22) ◽  
pp. 8051-8065 ◽  
Author(s):  
Jun Ying ◽  
Ping Huang

Abstract This study investigates how intermodel differences in large-scale ocean dynamics affect the tropical Pacific sea surface temperature (SST) warming (TPSW) pattern under global warming, as projected by 32 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The largest cause of intermodel TPSW differences is related to the cloud–radiation feedback. After removing the effect of cloud–radiation feedback, the authors find that differences in ocean advection play the next largest role, explaining around 14% of the total intermodel variance in TPSW. Of particular importance are differences in climatological zonal overturning circulation among the models. With the robust enhancement of ocean stratification across models, models with relatively strong climatological upwelling tend to have relatively weak SST warming in the eastern Pacific. Meanwhile, the pronounced intermodel differences in ocean overturning changes contribute little to uncertainty in the TPSW pattern. The intermodel differences in climatological zonal overturning are found to be associated with the intermodel spread in climatological SST. In most CMIP5 models, there is a common cold tongue associated with an overly strong overturning in the climatology simulation, implying a La Niña–like bias in the TPSW pattern projected by the MME of the CMIP5 models. This provides further evidence for the projection that the TPSW pattern should be closer to an El Niño–like pattern than the MME projection.


2012 ◽  
Vol 25 (21) ◽  
pp. 7764-7771 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yoo-Geun Ham ◽  
June-Yi Lee

This study assesses the changes in the tropical Pacific Ocean sea surface temperature (SST) trend and ENSO amplitude by comparing a historical run of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP) phase-5 multimodel ensemble dataset (CMIP5) and the CMIP phase-3 dataset (CMIP3). The results indicate that the magnitude of the SST trend in the tropical Pacific basin has been significantly reduced from CMIP3 to CMIP5, which may be associated with the overestimation of the response to natural forcing and aerosols by including Earth system models in CMIP5. Moreover, the patterns of tropical warming over the second half of the twentieth century have changed from a La Niña–like structure in CMIP3 to an El Niño–like structure in CMIP5. Further analysis indicates that such changes in the background state of the tropical Pacific and an increase in the sensitivity of the atmospheric response to the SST changes in the eastern tropical Pacific have influenced the ENSO properties. In particular, the ratio of the SST anomaly variance in the eastern and western tropical Pacific increased from CMIP3 to CMIP5, indicating that a center of action associated with the ENSO amplitude has shifted to the east.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2014 ◽  
Vol 32 (7) ◽  
pp. 793-807 ◽  
Author(s):  
M. Calisto ◽  
D. Folini ◽  
M. Wild ◽  
L. Bengtsson

Abstract. In this paper, radiative fluxes for 10 years from 11 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and from CERES satellite observations have been analyzed and compared. Under present-day conditions, the majority of the investigated CMIP5 models show a tendency towards a too-negative global mean net cloud radiative forcing (NetCRF) as compared to CERES. A separate inspection of the long-wave and shortwave contribution (LWCRF and SWCRF) as well as cloud cover points to different shortcomings in different models. Models with a similar NetCRF still differ in their SWCRF and LWCRF and/or cloud cover. Zonal means mostly show excessive SWCRF (too much cooling) in the tropics between 20° S and 20° N and in the midlatitudes between 40 to 60° S. Most of the models show a too-small/too-weak LWCRF (too little warming) in the subtropics (20 to 40° S and N). Difference maps between CERES and the models identify the tropical Pacific Ocean as an area of major discrepancies in both SWCRF and LWCRF. The summer hemisphere is found to pose a bigger challenge for the SWCRF than the winter hemisphere. The results suggest error compensation to occur between LWCRF and SWCRF, but also when taking zonal and/or annual means. Uncertainties in the cloud radiative forcing are thus still present in current models used in CMIP5.


2013 ◽  
Vol 26 (14) ◽  
pp. 4947-4961 ◽  
Author(s):  
Lin Chen ◽  
Yongqiang Yu ◽  
De-Zheng Sun

Abstract Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.


2012 ◽  
Vol 5 (4) ◽  
pp. 3621-3645 ◽  
Author(s):  
J. Xu ◽  
A. M. Powell

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (Radiosonde, Reanalysis, CMIP3 and CMIP5) although similarities can be observed. Compared to the CMIP3 model simulations, the simulation in some of CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2014 ◽  
Vol 7 (3) ◽  
pp. 3481-3504 ◽  
Author(s):  
J.-F. Exbrayat ◽  
A. J. Pitman ◽  
G. Abramowitz

Abstract. Soil carbon storage simulated by the Coupled Model Intercomparison Project (CMIP5) models varies 6-fold for the present day. We show that this range already exists at the beginning of the historical simulations and demonstrate that it is mostly an artifact of the representation of microbial decomposition and its response during the spin-up procedure used by the models. The 6-fold range in soil carbon, once established, is maintained through the present and to 2100 almost unchanged even under a strong business-as-usual emissions scenario. By highlighting the role of the response of decomposition to spin-up in explaining why current CMIP5 soil carbon stores vary widely, we identify the need to better constrain the outcome of this procedure as a means to reduce uncertainty in transient simulations.


2016 ◽  
Vol 29 (9) ◽  
pp. 3097-3118 ◽  
Author(s):  
Shuangmei Ma ◽  
Tianjun Zhou

Abstract In this study, the zonal mass streamfunction Ψ, which depicts intuitively the tropical Pacific Walker circulation (PWC) structure characterized by an enclosed and clockwise rotation cell in the zonal–vertical section over the equatorial Pacific, was used to study the changes of PWC spatial structure during 1979–2012. To examine the robustness of changes in PWC characteristics, the linear trends of PWC were evaluated and compared among the current seven sets of reanalysis data, along with a comparison to the trends of surface climate variables. The spatial pattern of Ψ trend exhibited a strengthening and westward-shifting trend of PWC in all reanalysis datasets, with the significantly positive Ψ dominating the western Pacific and negative Ψ controlling the eastern Pacific. This kind of change is physically in agreement with the changes of the sea level pressure (SLP), surface winds, and precipitation derived from both the reanalyses and independent observations. Quantitative analyses of the changes in the PWC intensity and western edge, defined based on the zonal mass streamfunction, also revealed a robust strengthening and westward-shifting trend among all reanalysis datasets, with a trend of 15.08% decade−1 and 3.70° longitude decade−1 in the ensemble mean of seven sets of reanalysis data, with the strongest (weakest) intensification of 17.53% decade−1 (7.96% decade−1) in the Twentieth Century Reanalysis (NCEP-2) and largest (smallest) westward shift of −4.68° longitude decade−1 (−2.55° longitude decade−1) in JRA-55 (JRA-25). In response to the recent observed La Niña–like anomalous SST forcing, the ensemble simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), with 26 models in the ensemble, reasonably reproduced the observed strengthening and westward-shifting trend of PWC, implying the dominant forcing of the La Niña–like SST anomalies to the recent PWC change.


2020 ◽  
Vol 50 (10) ◽  
pp. 2997-3007 ◽  
Author(s):  
Lauren B. Kuntz ◽  
Daniel P. Schrag

AbstractThe Equatorial Undercurrent (EUC) is a vital component of tropical Pacific circulation, helping to modulate the state of the equatorial Pacific Ocean. Here we compare the representation of the EUC in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with observations of the undercurrent. We find that the CMIP5 models consistently underestimate both the magnitude and variability of the EUC. Insufficient resolution as well as diffusivity parameterizations both contribute to a representation of the EUC that is too weak and too diffuse. Given the strong influence of the EUC on the evolution of tropical Pacific sea surface temperatures, model deficiencies in the EUC contribute to shortcomings in capturing ENSO dynamics and Pacific decadal variability. Further evaluation of the impact of EUC simulation on the climatology and variability in the tropical Pacific is necessary.


Sign in / Sign up

Export Citation Format

Share Document