scholarly journals Response of microbial decomposition to spin-up explains CMIP5 soil carbon range until 2100

2014 ◽  
Vol 7 (3) ◽  
pp. 3481-3504 ◽  
Author(s):  
J.-F. Exbrayat ◽  
A. J. Pitman ◽  
G. Abramowitz

Abstract. Soil carbon storage simulated by the Coupled Model Intercomparison Project (CMIP5) models varies 6-fold for the present day. We show that this range already exists at the beginning of the historical simulations and demonstrate that it is mostly an artifact of the representation of microbial decomposition and its response during the spin-up procedure used by the models. The 6-fold range in soil carbon, once established, is maintained through the present and to 2100 almost unchanged even under a strong business-as-usual emissions scenario. By highlighting the role of the response of decomposition to spin-up in explaining why current CMIP5 soil carbon stores vary widely, we identify the need to better constrain the outcome of this procedure as a means to reduce uncertainty in transient simulations.

2014 ◽  
Vol 7 (6) ◽  
pp. 2683-2692 ◽  
Author(s):  
J.-F. Exbrayat ◽  
A. J. Pitman ◽  
G. Abramowitz

Abstract. Soil carbon storage simulated by the Coupled Model Intercomparison Project (CMIP5) models varies 6-fold for the present day. Here, we confirm earlier work showing that this range already exists at the beginning of the CMIP5 historical simulations. We additionally show that this range is largely determined by the response of microbial decomposition during each model's spin-up procedure from initialization to equilibration. The 6-fold range in soil carbon, once established prior to the beginning of the historical period (and prior to the beginning of a CMIP5 simulation), is then maintained through the present and to 2100 almost unchanged even under a strong business-as-usual emissions scenario. We therefore highlight that a commonly ignored part of CMIP5 analyses – the land surface state achieved through the spin-up procedure – can be important for determining future carbon storage and land surface fluxes. We identify the need to better constrain the outcome of the spin-up procedure as an important step in reducing uncertainty in both projected soil carbon and land surface fluxes in CMIP5 transient simulations.


2020 ◽  
Vol 33 (12) ◽  
pp. 5305-5316 ◽  
Author(s):  
Shijie Zhou ◽  
Gang Huang ◽  
Ping Huang

AbstractIn phases 5 and 6 of the state-of-the-art Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively) models, there is an apparent excessive rainfall bias with a negative SST bias in the tropical Pacific intertropical convergence zone (ITCZ). The regime of the excessive ITCZ but negative SST bias is inconsistent with the common positive rainfall–SST correlation of climate anomalies over the tropics. Using a two-mode model, we decomposed the rainfall bias into two components and found that the surface convergence (SC) bias is the key factor forming the excessive ITCZ bias in the historical runs of 25 CMIP5 models and 23 CMIP6 models. A mixed layer model was further applied to connect the formation of the SC bias with the SST pattern bias. The results suggest that the meridional pattern of the SST bias plays a key role in forming the SC bias. In the CMIP5 and CMIP6 models, the overall negative SST bias has two apparent meridional troughs at around 10°S and 10°N, respectively. The two meridional troughs in the SST bias drive two convergence centers in the SC bias favoring the excessive ITCZ, even though the local SST bias is negative.


2013 ◽  
Vol 10 (6) ◽  
pp. 10229-10269
Author(s):  
J.-F. Exbrayat ◽  
A. J. Pitman ◽  
Q. Zhang ◽  
G. Abramowitz ◽  
Y.-P. Wang

Abstract. Reliable projections of future climate require land–atmosphere carbon (C) fluxes to be represented realistically in Earth System Models. There are several sources of uncertainty in how carbon is parameterized in these models. First, while interactions between the C, nitrogen (N) and phosphorus (P) cycles have been implemented in some models, these lead to diverse changes in land–atmosphere fluxes. Second, while the parameterization of soil organic matter decomposition is similar between models, formulations of the control of the soil physical state on microbial activity vary widely. We address these sources uncertainty by implementing three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in an Earth System Model that can be run with three degrees of biogeochemical nutrient limitation (C-only, C and N, and C and N and P). All 27 possible combinations of a SMRF with a STRF and a biogeochemical mode are equilibrated before transient historical (1850–2005) simulations are performed. As expected, implementing N and P limitation reduces the land carbon sink, transforming some regions from net sinks to net sources over the historical period (1850–2005). Differences in the soil C balance implied by the various SMRFs and STRFs also change the sign of some regional sinks. Further, although the absolute uncertainty in global carbon uptake is reduced, the uncertainty due to the SMRFs and STRFs grows relative to the inter-annual variability in net uptake when N and P limitations are added. We also demonstrate that the equilibrated soil C also depend on the shape of the SMRF and STRF. Equilibration using different STRFs and SMRFs and nutrient limitation generates a six-fold range of global soil C that largely mirrors the range in available (17) CMIP5 models. Simulating the historical change in soil carbon therefore critically depends on the choice of STRF, SMRF and nutrient limitation, as it controls the equilibrated state to which transient conditions are applied. This direct effect of the representation of microbial decomposition in Earth System Models adds to recent concerns on the adequacy of these simple representations of very complex soil carbon processes.


2020 ◽  
Vol 33 (2) ◽  
pp. 477-496 ◽  
Author(s):  
Shang-Min Long ◽  
Shang-Ping Xie ◽  
Yan Du ◽  
Qinyu Liu ◽  
Xiao-Tong Zheng ◽  
...  

AbstractThe 2015 Paris Agreement proposed targets to limit global-mean surface temperature (GMST) rise well below 2°C relative to preindustrial level by 2100, requiring a cease in the radiative forcing (RF) increase in the near future. In response to changing RF, the deep ocean responds slowly (ocean slow response), in contrast to the fast ocean mixed layer adjustment. The role of the ocean slow response under low warming targets is investigated using representative concentration pathway (RCP) 2.6 simulations from phase 5 of the Coupled Model Intercomparison Project. In RCP2.6, the deep ocean continues to warm while RF decreases after reaching a peak. The deep ocean warming helps to shape the trajectories of GMST and fuels persistent thermosteric sea level rise. A diagnostic method is used to decompose further changes after the RF peak into a slow warming component under constant peak RF and a cooling component due to the decreasing RF. Specifically, the slow warming component amounts to 0.2°C (0.6°C) by 2100 (2300), raising the hurdle for achieving the low warming targets. When RF declines, the deep ocean warming takes place in all basins but is the most pronounced in the Southern Ocean and Atlantic Ocean where surface heat uptake is the largest. The climatology and change of meridional overturning circulation are both important for the deep ocean warming. To keep the GMST rise at a low level, substantial decrease in RF is required to offset the warming effect from the ocean slow response.


2015 ◽  
Vol 56 (70) ◽  
pp. 89-97 ◽  
Author(s):  
Marion Réveillet ◽  
Antoine Rabatel ◽  
Fabien Gillet-Chaulet ◽  
Alvaro Soruco

AbstractBolivian glaciers are an essential source of fresh water for the Altiplano, and any changes they may undergo in the near future due to ongoing climate change are of particular concern. Glaciar Zongo, Bolivia, located near the administrative capital La Paz, has been extensively monitored by the GLACIOCLIM observatory in the last two decades. Here we model the glacier dynamics using the 3-D full-Stokes model Elmer/Ice. The model was calibrated and validated over a recent period (1997–2010) using four independent datasets: available observations of surface velocities and surface mass balance were used for calibration, and changes in surface elevation and retreat of the glacier front were used for validation. Over the validation period, model outputs are in good agreement with observations (differences less than a small percentage). The future surface mass balance is assumed to depend on the equilibrium-line altitude (ELA) and temperature changes through the sensitivity of ELA to temperature. The model was then forced for the 21st century using temperature changes projected by nine Coupled Model Intercomparison Project phase 5 (CMIP5) models. Here we give results for three different representative concentration pathways (RCPs). The intermediate scenario RCP6.0 led to 69 ± 7% volume loss by 2100, while the two extreme scenarios, RCP2.6 and RCP8.5, led to 40 ± 7% and 89 ± 4% loss of volume, respectively.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2013 ◽  
Vol 26 (19) ◽  
pp. 7692-7707 ◽  
Author(s):  
Yao Yao ◽  
Yong Luo ◽  
Jianbin Huang ◽  
Zongci Zhao

Abstract The extreme monthly-mean temperatures simulated by 28 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are evaluated and compared with those from 24 models in the third phase of the Coupled Model Intercomparison Project (CMIP3). Comparisons with observations and reanalyses indicate that the models from both CMIP3 and CMIP5 perform well in simulating temperature extremes, which are expressed as 20-yr return values. When the climatological annual cycle is removed, the ensemble spread in CMIP5 is smaller than that in CMIP3. Benefitting from a higher resolution, the CMIP5 models perform better at simulating extreme temperatures on the local gridcell scale. The CMIP5 representative concentration pathway (RCP4.5) and CMIP3 B1 experiments project a similar change pattern in the near future for both warm and cold extremes, and the pattern is in agreement with that of the seasonal extremes. By the late twenty-first century, the changes in monthly temperature extremes projected under the three CMIP3 (B1, A1B, and A2) and two CMIP5 (RCP4.5 and RCP8.5) scenarios generally follow the changes in climatological annual cycles, which is consistent with previous studies on daily extremes. Compared with the CMIP3 ensemble, the CMIP5 ensemble shows a larger intermodel uncertainty with regard to the change in cold extremes in snow-covered regions. Enhanced changes in extreme temperatures that exceed the global mean warming are found in regions where the retreat of snow (or the soil moisture feedback effect) plays an important role, confirming the findings for daily temperature extremes.


2020 ◽  
Author(s):  
June-Yi Lee ◽  
Kyung-Sook Yun ◽  
Arjun Babu ◽  
Young-Min Yang ◽  
Eui-Seok Chung ◽  
...  

<p><span>The Coupled Model Intercomparison Project Phase 5 (CMIP5) models have showed substantial inter-model spread in estimating annual global-mean precipitation change per one-degree greenhouse-gas-induced warming (precipitation sensitivity), ranging from -4.5</span><span>–4.2</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the Representative Concentration Pathway (RCP) 2.6, the lowest emission scenario, to 0.2–4.0</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the RCP 8.5, the highest emission scenario. The observed-based estimations in the global-mean land precipitation sensitivity during last few decades even show much larger spread due to the considerable natural interdecadal variability, role of anthropogenic aerosol forcing, and uncertainties in observation. This study tackles to better quantify and constrain global land precipitation change in response to global warming by analyzing the new range of Shared Socio-economic Pathway (SSP) scenarios in the </span><span>Coupled Model Intercomparison Project Phase 6 (CMIP6) compared with RCP scenarios in the CMIP5. We show that the range of projected change in annual global-mean land (ocean) precipitation by the end of the 21<sup>st</sup>century relative to the recent past (1995-2014) in the 23 CMIP6 models is over 50% (20%) larger than that in corresponding scenarios of the 40 CMIP5 models. The estimated ranges of precipitation sensitivity in four Tier-1 SSPs are also larger than those in corresponding CMIP5 RCPs. The large increase in projected precipitation change in the highest quartile over ocean is mainly due to the increased number of high equilibrium climate sensitivity (ECS) models in CMIP6 compared to CMIP5, but not over land due to different response of thermodynamic moisture convergence and dynamic processes to global warming. We further discuss key challenges in constraining future precipitation change and source of uncertainties in land precipitation change.</span></p>


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


Sign in / Sign up

Export Citation Format

Share Document