scholarly journals Frequency-dependent estimation of effective spatial degrees of freedom

2021 ◽  
pp. 1-49
Author(s):  
Torben Kunz ◽  
Thomas Laepple

AbstractClimate variability occurs over wide ranges of spatial and temporal scales. It exhibits a complex spatial covariance structure, which depends on geographic location (e.g., tropics vs. extratropics), and also consists of a superposition of: (a) components with gradually decaying positive correlation functions, and (b) teleconnections that often involve anti-correlations. In addition, there are indications that the spatial covariance structure depends on frequency. Thus, a comprehensive assessment of the spatio-temporal covariance structure of climate variability would require an extensive set of statistical diagnostics. Therefore, it is often desirable to characterize the covariance structure by a simple summarizing metric that is easy to compute from datasets. Such summarizing metrics are useful, for example, in the context of comparisons between climate models or between models and observations. Here we introduce a frequency-dependent version of a simple measure of the effective spatial degrees of freedom. The measure is based on the temporal variance of the global average of some climate variable, and its novel aspect consists in its frequency-dependence. We also provide a clear geometric interpretation of the measure. Its easy applicability is demonstrated using near-surface temperature and precipitation fields obtained from a paleoclimate model simulation. This application reveals a distinct scaling behavior of the spatial degrees of freedom as a function of frequency, ranging from monthly to millennial scales.

2016 ◽  
Vol 9 (11) ◽  
pp. 4097-4109
Author(s):  
Heikki Järvinen ◽  
Teija Seitola ◽  
Johan Silén ◽  
Jouni Räisänen

Abstract. A performance expectation is that Earth system models simulate well the climate mean state and the climate variability. To test this expectation, we decompose two 20th century reanalysis data sets and 12 CMIP5 model simulations for the years 1901–2005 of the monthly mean near-surface air temperature using randomised multi-channel singular spectrum analysis (RMSSA). Due to the relatively short time span, we concentrate on the representation of multi-annual variability which the RMSSA method effectively captures as separate and mutually orthogonal spatio-temporal components. This decomposition is a unique way to separate statistically significant quasi-periodic oscillations from one another in high-dimensional data sets.The main results are as follows. First, the total spectra for the two reanalysis data sets are remarkably similar in all timescales, except that the spectral power in ERA-20C is systematically slightly higher than in 20CR. Apart from the slow components related to multi-decadal periodicities, ENSO oscillations with approximately 3.5- and 5-year periods are the most prominent forms of variability in both reanalyses. In 20CR, these are relatively slightly more pronounced than in ERA-20C. Since about the 1970s, the amplitudes of the 3.5- and 5-year oscillations have increased, presumably due to some combination of forced climate change, intrinsic low-frequency climate variability, or change in global observing network. Second, none of the 12 coupled climate models closely reproduce all aspects of the reanalysis spectra, although some models represent many aspects well. For instance, the GFDL-ESM2M model has two nicely separated ENSO periods although they are relatively too prominent as compared with the reanalyses. There is an extensive Supplement and YouTube videos to illustrate the multi-annual variability of the data sets.


2020 ◽  
Vol 33 (11) ◽  
pp. 4599-4620 ◽  
Author(s):  
Sergey Kravtsov

AbstractThis paper addresses the dynamics of internal hemispheric-scale multidecadal climate variability by postulating an energy-balance (EBM) model comprising two deep-ocean oscillators in the Atlantic and Pacific basins, coupled through their surface mixed layers via atmospheric teleconnections. This system is linear and driven by the atmospheric noise. Two sets of the EBM model parameters are developed by fitting the EBM-based mixed-layer temperature covariance structure to best mimic basin-average North Atlantic/Pacific sea surface temperature (SST) covariability in either observations or control simulations of comprehensive climate models within the CMIP5 project. The differences between the dynamics underlying the observed and CMIP5-simulated multidecadal climate variability and predictability are encapsulated in the algebraic structure of the two EBM model versions so obtained: EBMCMIP5 and EBMOBS. The multidecadal variability in EBMCMIP5 is overall weaker and amounts to a smaller fraction of the total SST variability than in EBMOBS, pointing to a lower potential decadal predictability of virtual CMIP5 climates relative to that of the actual climate. The EBMCMIP5 decadal hemispheric teleconnections (and, by inference, those in CMIP5 models) are largely controlled by the variability of the Pacific, in which the ocean, due to its large thermal and dynamical memory, acts as a passive integrator of atmospheric noise. By contrast, EBMOBS features a stronger two-way coupling between the Atlantic and Pacific multidecadal oscillators, thereby suggesting the existence of a hemispheric-scale and, perhaps, global multidecadal mode associated with internal ocean dynamics. The inferred differences between the observed and CMIP5 simulated climate variability stem from a stronger communication between the deep ocean and surface processes implicit in the observational data.


2016 ◽  
Author(s):  
Christian Beer ◽  
Philipp Porada ◽  
Altug Ekici ◽  
Matthias Brakebusch

Abstract. To clarify effects of the variability of meteorological measures and their extreme events on topsoil and subsoil temperature in permafrost regions, an artificially manipulated climate dataset has been used for process-oriented model experiments. Climate variability mainly impacts snow depth, and the cover and thermal diffusivity of lichens and bryophytes. The latter effect is of opposite direction in summer and winter. These impacts of climate variability on insulating layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is up to 1 K higher when climate variability is reduced under conserved long-term mean meteorological measures. Climate models project warming of the Arctic region but also increasing climate variability and extreme events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness will be less pronounced in response to climate change when considering dynamic snow and near-surface vegetation modules.


2009 ◽  
Vol 22 (6) ◽  
pp. 1393-1411 ◽  
Author(s):  
Tom Osborne ◽  
Julia Slingo ◽  
David Lawrence ◽  
Tim Wheeler

Abstract This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2021 ◽  
pp. 127225
Author(s):  
Rafael M. Gomes ◽  
Wesley B. Cardoso ◽  
Ardiley T. Avelar

2021 ◽  
Vol 147 ◽  
pp. 106798
Author(s):  
Chun-Hsiang Kuo ◽  
Jyun-Yan Huang ◽  
Che-Min Lin ◽  
Chun-Te Chen ◽  
Kuo-Liang Wen

2021 ◽  
Author(s):  
Thordis Thorarinsdottir ◽  
Jana Sillmann ◽  
Marion Haugen ◽  
Nadine Gissibl ◽  
Marit Sandstad

<p>Reliable projections of extremes in near-surface air temperature (SAT) by climate models become more and more important as global warming is leading to significant increases in the hottest days and decreases in coldest nights around the world with considerable impacts on various sectors, such as agriculture, health and tourism.</p><p>Climate model evaluation has traditionally been performed by comparing summary statistics that are derived from simulated model output and corresponding observed quantities using, for instance, the root mean squared error (RMSE) or mean bias as also used in the model evaluation chapter of the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Both RMSE and mean bias compare averages over time and/or space, ignoring the variability, or the uncertainty, in the underlying values. Particularly when interested in the evaluation of climate extremes, climate models should be evaluated by comparing the probability distribution of model output to the corresponding distribution of observed data.</p><p>To address this shortcoming, we use the integrated quadratic distance (IQD) to compare distributions of simulated indices to the corresponding distributions from a data product. The IQD is the proper divergence associated with the proper continuous ranked probability score (CRPS) as it fulfills essential decision-theoretic properties for ranking competing models and testing equality in performance, while also assessing the full distribution.</p><p>The IQD is applied to evaluate CMIP5 and CMIP6 simulations of monthly maximum (TXx) and minimum near-surface air temperature (TNn) over the data-dense regions Europe and North America against both observational and reanalysis datasets. There is not a notable difference between the model generations CMIP5 and CMIP6 when the model simulations are compared against the observational dataset HadEX2. However, the CMIP6 models show a better agreement with the reanalysis ERA5 than CMIP5 models, with a few exceptions. Overall, the climate models show higher skill when compared against ERA5 than when compared against HadEX2. While the model rankings vary with region, season and index, the model evaluation is robust against changes in the grid resolution considered in the analysis.</p>


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

<p>Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.</p><p>Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.</p>


2021 ◽  
Author(s):  
Mickaël Lalande ◽  
Martin Ménégoz ◽  
Gerhard Krinner

<p>The High Mountains of Asia (HMA) region and the Tibetan Plateau (TP), with an average altitude of 4000 m, are hosting the third largest reservoir of glaciers and snow after the two polar ice caps, and are at the origin of strong orographic precipitation. Climate studies over HMA are related to serious challenges concerning the exposure of human infrastructures to natural hazards and the water resources for agriculture, drinking water, and hydroelectricity to whom several hundred million inhabitants of the Indian subcontinent are depending. However, climate variables such as temperature, precipitation, and snow cover are poorly described by global climate models because their coarse resolution is not adapted to the rugged topography of this region. Since the first CMIP exercises, a cold model bias has been identified in this region, however, its attribution is not obvious and may be different from one model to another. Our study focuses on a multi-model comparison of the CMIP6 simulations used to investigate the climate variability in this area to answer the next questions: (1) are the biases in HMA reduced in the new generation of climate models? (2) Do the model biases impact the simulated climate trends? (3) What are the links between the model biases in temperature, precipitation, and snow cover extent? (4) Which climate trajectories can be projected in this area until 2100? An analysis of 27 models over 1979-2014 still show a cold bias in near-surface air temperature over the HMA and TP reaching an annual value of -2.0 °C (± 3.2 °C), associated with an over-extended relative snow cover extent of 53 % (± 62 %), and a relative excess of precipitation of 139 % (± 38 %), knowing that the precipitation biases are uncertain because of the undercatch of solid precipitation in observations. Model biases and trends do not show any clear links, suggesting that biased models should not be excluded in trend and projections analysis, although non-linear effects related to lagged snow cover feedbacks could be expected. On average over 2081-2100 with respect to 1995-2014, for the scenarios SSP126, SSP245, SSP370, and SSP585, the 9 available models shows respectively an increase in annual temperature of 1.9 °C (± 0.5 °C), 3.4 °C (± 0.7 °C), 5.2 °C (± 1.2 °C), and 6.6 °C (± 1.5 °C); a relative decrease in the snow cover extent of 10 % (± 4.1 %), 19 % (± 5 %), 29 % (± 8 %), and 35 % (± 9 %); and an increase in total precipitation of 9 % (± 5 %), 13 % (± 7 %), 19 % (± 11 %), and 27 % (± 13 %). Further analyses will be considered to investigate potential links between the biases at the surface and those at higher tropospheric levels as well as with the topography. The models based on high resolution do not perform better than the coarse-gridded ones, suggesting that the race to high resolution should be considered as a second priority after the developments of more realistic physical parameterizations.</p>


Sign in / Sign up

Export Citation Format

Share Document