scholarly journals Anthropogenic Temperature and Salinity Changes in the Southern Ocean

2021 ◽  
Vol 34 (1) ◽  
pp. 215-228
Author(s):  
William R. Hobbs ◽  
Christopher Roach ◽  
Tilla Roy ◽  
Jean-Baptiste Sallée ◽  
Nathaniel Bindoff

AbstractIn this study, we compare observed Southern Ocean temperature and salinity changes with the historical simulations from 13 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using an optimal fingerprinting framework. We show that there is an unequivocal greenhouse gas–forced warming in the Southern Ocean. This warming is strongest in the Subantarctic Mode Waters but is also detectable in denser water masses, which has not been shown in previous studies. We also find greenhouse gas–forced salinity changes, most notably a freshening of Antarctic Intermediate Waters. Our analysis also shows that non–greenhouse gas anthropogenic forcings—anthropogenic aerosols and stratospheric ozone depletion—have played an important role in mitigating the Southern Ocean’s warming. However, the detectability of these responses using optimal fingerprinting is model dependent, and this result is therefore not as robust as for the greenhouse gas response.

2021 ◽  
Author(s):  
Yeon-Hee Kim ◽  
Seung-Ki Min

<p>Arctic sea-ice area (ASIA) has been declining rapidly throughout the year during recent decades, but a formal quantification of greenhouse gas (GHG) contribution remains limited. This study conducts an attribution analysis of the observed ASIA changes from 1979 to 2017 by comparing three satellite observations with the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model simulations using an optimal fingerprint method. The observed ASIA exhibits overall decreasing trends across all months with stronger trends in warm seasons. CMIP6 anthropogenic plus natural forcing (ALL) simulations and GHG-only forcing simulations successfully capture the observed temporal trend patterns. Results from detection analysis show that ALL signals are detected robustly for all calendar months for three observations. It is found that GHG signals are detectable in the observed ASIA decrease throughout the year, explaining most of the ASIA reduction, with a much weaker contribution by other external forcings. We additionally find that the Arctic Ocean will occur ice-free in September around the 2040s regardless of the emission scenario.</p>


2020 ◽  
Vol 33 (15) ◽  
pp. 6555-6581 ◽  
Author(s):  
R. L. Beadling ◽  
J. L. Russell ◽  
R. J. Stouffer ◽  
M. Mazloff ◽  
L. D. Talley ◽  
...  

AbstractThe air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct consequence of the unique and complex ocean circulation that exists there. Previous generations of climate models have struggled to accurately represent key SO properties and processes that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly represented. While generational improvement is found in many metrics, persistent systematic biases are highlighted that should be a priority during model development. These biases need to be considered when interpreting projected trends or biogeochemical properties in this region.


2011 ◽  
Vol 38 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Sigmond ◽  
M. C. Reader ◽  
J. C. Fyfe ◽  
N. P. Gillett

2021 ◽  
Vol 34 (3) ◽  
pp. 871-881
Author(s):  
Siyan Dong ◽  
Ying Sun ◽  
Chao Li ◽  
Xuebin Zhang ◽  
Seung-Ki Min ◽  
...  

AbstractWhile the IPCC Fifth Assessment Working Group I report assessed observed changes in extreme precipitation on the basis of both absolute and percentile-based extreme indices, human influence on extreme precipitation has rarely been evaluated on the basis of percentile-based extreme indices. Here we conduct a formal detection and attribution analysis on changes in four percentile-based precipitation extreme indices. The indices include annual precipitation totals from days with precipitation exceeding the 99th and 95th percentiles of wet-day precipitation in 1961–90 (R99p and R95p) and their contributions to annual total precipitation (R99pTOT and R95pTOT). We compare these indices from a set of newly compiled observations during 1951–2014 with simulations from models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). We show that most land areas with observations experienced increases in these extreme indices with global warming during the historical period 1951–2014. The new CMIP6 models are able to reproduce these overall increases, although with considerable over- or underestimations in some regions. An optimal fingerprinting analysis reveals detectable anthropogenic signals in the observations of these indices averaged over the globe and over most continents. Furthermore, signals of greenhouse gases can be separately detected, taking other forcing into account, over the globe and over Asia in these indices except for R95p. In contrast, signals of anthropogenic aerosols and natural forcings cannot be detected in any of these indices at either global or continental scales.


Author(s):  
A. J. S. Meijers

The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear.


2015 ◽  
Vol 28 (20) ◽  
pp. 8067-8077 ◽  
Author(s):  
H. Nguyen ◽  
C. Lucas ◽  
A. Evans ◽  
B. Timbal ◽  
L. Hanson

Abstract Changes of the Southern Hemisphere Hadley cell over the twentieth century are investigated using the Twentieth Century Reanalysis (20CR) and coupled model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Trends computed on a 30-yr sliding window on the 20CR dataset reveal a statistically significant expansion of the Hadley cell from 1968 forced by an increasing surface global warming. This expansion is strongly associated with the intensification and poleward shift of the subtropical dry zone, which potentially explain the increasing trends of droughts in the subtropical regions such as southern Australia, South America, and Africa. Coupled models from the CMIP5 do not adequately simulate the observed amount of the Hadley expansion, only showing an average of one-fourth of the expansion as determined from the 20CR and only when simulations include greenhouse gas forcing as opposed to simulations including natural forcing only.


2013 ◽  
Vol 26 (10) ◽  
pp. 3258-3274 ◽  
Author(s):  
K. D. Williams ◽  
A. Bodas-Salcedo ◽  
M. Déqué ◽  
S. Fermepin ◽  
B. Medeiros ◽  
...  

Abstract The Transpose-Atmospheric Model Intercomparison Project (AMIP) is an international model intercomparison project in which climate models are run in “weather forecast mode.” The Transpose-AMIP II experiment is run alongside phase 5 of the Coupled Model Intercomparison Project (CMIP5) and allows processes operating in climate models to be evaluated, and the origin of climatological biases to be explored, by examining the evolution of the model from a state in which the large-scale dynamics, temperature, and humidity structures are constrained through use of common analyses. The Transpose-AMIP II experimental design is presented. The project requests participants to submit a comprehensive set of diagnostics to enable detailed investigation of the models to be performed. An example of the type of analysis that may be undertaken using these diagnostics is illustrated through a study of the development of cloud biases over the Southern Ocean, a region that is problematic for many models. Several models share a climatological bias for too little reflected shortwave radiation from cloud across the region. This is found to mainly occur behind cold fronts and/or on the leading side of transient ridges and to be associated with more stable lower-tropospheric profiles. Investigation of a case study that is typical of the bias and associated meteorological conditions reveals the models to typically simulate cloud that is too optically and physically thin with an inversion that is too low. The evolution of the models within the first few hours suggests that these conditions are particularly sensitive and a positive feedback can develop between the thinning of the cloud layer and boundary layer structure.


2013 ◽  
Vol 26 (17) ◽  
pp. 6679-6697 ◽  
Author(s):  
Debbie Polson ◽  
Gabriele C. Hegerl ◽  
Xuebin Zhang ◽  
Timothy J. Osborn

Abstract Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive are used to calculate the zonal-mean change in seasonal land precipitation for the second half of the twentieth century in response to a range of external forcings, including anthropogenic and natural forcings combined (ALL), greenhouse gas forcing, anthropogenic aerosol forcing, anthropogenic forcings combined, and natural forcing. These simulated patterns of change are used as fingerprints in a detection and attribution study applied to four different gridded observational datasets of global land precipitation from 1951 to 2005. There are large differences in the spatial and temporal coverage in the observational datasets. Yet despite these differences, the zonal-mean patterns of change are mostly consistent except at latitudes where spatial coverage is limited. The results show some differences between datasets, but the influence of external forcings is robustly detected in March–May, December–February, and for annual changes for the three datasets more suitable for studying changes. For June–August and September–November, external forcing is only detected for the dataset that includes only long-term stations. Fingerprints for combinations of forcings that include the effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting that greenhouse gas influence drives the detectable features of the ALL forcing fingerprint. Fingerprints of only natural or only anthropogenic aerosol forcing are not detected. This, together with two-fingerprint results, suggests that at least some of the detected change in zonal land precipitation can be attributed to human influences.


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


Sign in / Sign up

Export Citation Format

Share Document