Decadal Modulation of the ENSO-Indian Ocean Basin Warming relationship during the decaying summer by the Interdecadal Pacific Oscillation

2021 ◽  
pp. 1-50
Author(s):  
Fangyu Liu ◽  
Wenjun Zhang ◽  
Fei-Fei Jin ◽  
Suqiong Hu

AbstractMany previous studies have shown that an Indian Ocean basin warming (IOBW) occurs usually during El Niño-Southern Oscillation (ENSO) decaying spring to summer seasons through modifying the equatorial zonal circulation. Decadal modulation associated with the Interdecadal Pacific Oscillation (IPO) is further investigated here to understand the nonstationary ENSO-IOBW relationship during ENSO decaying summer (July-August-September, JAS). During the positive IPO phase, significant warm sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean in El Niño decaying summers and vice versa for La Niña events, while these patterns are not well detected in the negative IPO phase. Different decaying speeds of ENSO associated with the IPO phase, largely controlled by both zonal advective and thermocline feedbacks, are suggested to be mainly responsible for these different ENSO-IOBW relationships. In contrast to ENSO events in the negative IPO phase, the ones in the positive IPO phase display a slower decaying speed and delay their transitions both from a warm to a cold state and a cold to a warm state. The slower decay of El Niño and La Niña thereby helps to sustain the teleconnection forcing over the equatorial Indian Ocean and corresponding SST anomalies there can persist into summer. This IPO modulation of the ENSO-IOBW relationship carries important implications for the seasonal prediction of the Indian Ocean SST anomalies and associated summer climate anomalies.

2019 ◽  
Vol 32 (7) ◽  
pp. 2057-2073 ◽  
Author(s):  
Yu Huang ◽  
Bo Wu ◽  
Tim Li ◽  
Tianjun Zhou ◽  
Bo Liu

The interdecadal variability of basinwide sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO), referred to as the interdecadal Indian Ocean basin mode (ID-IOBM), is caused by remote forcing of the interdecadal Pacific oscillation (IPO), as demonstrated by the observational datasets and tropical Pacific pacemaker experiments of the Community Earth System Model (CESM). It is noted that the growth of the ID-IOBM shows a season-dependent characteristic, with a maximum tendency of mixed layer heat anomalies occurring in early boreal winter. Three factors contribute to this maximum tendency. In response to the positive IPO forcing, the eastern TIO is covered by the descending branch of the anomalous Walker circulation. Thus, the convection over the southeastern TIO is suppressed, which increases local downward shortwave radiative fluxes. Meanwhile, the equatorial easterly anomalies to the west of the suppressed convection weaken the background mean westerly and thus decrease the upward latent heat fluxes over the equatorial Indian Ocean. Third, anomalous westward Ekman currents driven by the equatorial easterly anomalies advect climatological warm water westward and thus warm the western TIO. In summer, the TIO is out of the control of the positive IPO remote forcing. The ID-IOBM gradually decays due to the Newtonian damping effect.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


2012 ◽  
Vol 25 (21) ◽  
pp. 7743-7763 ◽  
Author(s):  
A. Santoso ◽  
M. H. England ◽  
W. Cai

The impact of Indo-Pacific climate feedback on the dynamics of El Niño–Southern Oscillation (ENSO) is investigated using an ensemble set of Indian Ocean decoupling experiments (DCPL), utilizing a millennial integration of a coupled climate model. It is found that eliminating air–sea interactions over the Indian Ocean results in various degrees of ENSO amplification across DCPL simulations, with a shift in the underlying dynamics toward a more prominent thermocline mode. The DCPL experiments reveal that the net effect of the Indian Ocean in the control runs (CTRL) is a damping of ENSO. The extent of this damping appears to be negatively correlated to the coherence between ENSO and the Indian Ocean dipole (IOD). This type of relationship can arise from the long-lasting ENSO events that the model simulates, such that developing ENSO often coincides with Indian Ocean basin-wide mode (IOBM) anomalies during non-IOD years. As demonstrated via AGCM experiments, the IOBM enhances western Pacific wind anomalies that counteract the ENSO-enhancing winds farther east. In the recharge oscillator framework, this weakens the equatorial Pacific air–sea coupling that governs the ENSO thermocline feedback. Relative to the IOBM, the IOD is more conducive for ENSO growth. The net damping by the Indian Ocean in CTRL is thus dominated by the IOBM effect which is weaker with stronger ENSO–IOD coherence. The stronger ENSO thermocline mode in DCPL is consistent with the absence of any IOBM anomalies. This study supports the notion that the Indian Ocean should be viewed as an integral part of ENSO dynamics.


2009 ◽  
Vol 22 (3) ◽  
pp. 615-632 ◽  
Author(s):  
Hsun-Ying Kao ◽  
Jin-Yi Yu

Abstract Surface observations and subsurface ocean assimilation datasets are examined to contrast two distinct types of El Niño–Southern Oscillation (ENSO) in the tropical Pacific: an eastern-Pacific (EP) type and a central-Pacific (CP) type. An analysis method combining empirical orthogonal function (EOF) analysis and linear regression is used to separate these two types. Correlation and composite analyses based on the principal components of the EOF were performed to examine the structure, evolution, and teleconnection of these two ENSO types. The EP type of ENSO is found to have its SST anomaly center located in the eastern equatorial Pacific attached to the coast of South America. This type of ENSO is associated with basinwide thermocline and surface wind variations and shows a strong teleconnection with the tropical Indian Ocean. In contrast, the CP type of ENSO has most of its surface wind, SST, and subsurface anomalies confined in the central Pacific and tends to onset, develop, and decay in situ. This type of ENSO appears less related to the thermocline variations and may be influenced more by atmospheric forcing. It has a stronger teleconnection with the southern Indian Ocean. Phase-reversal signatures can be identified in the anomaly evolutions of the EP-ENSO but not for the CP-ENSO. This implies that the CP-ENSO may occur more as events or epochs than as a cycle. The EP-ENSO has experienced a stronger interdecadal change with the dominant period of its SST anomalies shifted from 2 to 4 yr near 1976/77, while the dominant period for the CP-ENSO stayed near the 2-yr band. The different onset times of these two types of ENSO imply that the difference between the EP and CP types of ENSO could be caused by the timing of the mechanisms that trigger the ENSO events.


2020 ◽  
Author(s):  
Yaqi Wang ◽  
Juan Feng ◽  
Jianping Li ◽  
Ran An ◽  
Lanning Wang

<p>The variability of boreal spring Hadley circulation (HC) over the Asian monsoon domain over the last four decades is explored. The climatological distribution of the regional HC is symmetric of the equator, with the ascending branch around the equator and sinking branch around the subtropics in each hemisphere. The first dominant mode (EOF1) of the regional HC is equatorial asymmetric, with the main body in the Southern Hemisphere (SH) and the ascending branch to the north of the equator. This mode is mainly characterized by interannual variation and is related to El Niño-Southern Oscillation (ENSO). Significant negative sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean (TIO) along with the development of La Niña events; however, the magnitude of SST anomalies in the southern Indian Ocean is greater than that in the northern counterpart, contributing to EOF1 formation. The spatial distribution of the second dominant mode (EOF2) is with the main body lying in the Northern Hemisphere (NH) and the ascending branch located to the south of the equator. The temporal variation of this mode is connected to the warming of the TIO. The warming rate of the southern TIO SST is faster than that in the northern counterpart, resulting in the southward migration of the rising branch. The above result indicates the critical role of the meridional distribution of SST on the variability of the regional HC.</p>


2011 ◽  
Vol 24 (20) ◽  
pp. 5365-5377 ◽  
Author(s):  
Kaiming Hu ◽  
Gang Huang ◽  
Ronghui Huang

Abstract Evidence is presented that the boreal summer surface air temperature over south China and northeast China is remotely influenced by the Indian Ocean Basin mode (IOBM) sea surface temperature (SST) anomalies. Above-normal temperature in south China and below-normal temperature in northeast China correspond to a simultaneous Indian Ocean Basin warming. The teleconnection from Indian Ocean SST anomalies to China summer surface air temperature is investigated using observations and an atmospheric general circulation model (AGCM). The results herein indicate that the tropical Indian Ocean Basin warming can trigger a low-level anomalous anticyclone circulation in the subtropical northwest Pacific and an anomalous cyclone circulation in midlatitude East Asia through emanating a baroclinic Kelvin wave. In south China, the reduced rainfall and downward vertical motion associated with the anomalous low-level anticyclone circulation lead to above-normal summer surface air temperature. In northeast China, by contrast, upward vertical motion associated with the anomalous cyclone leads to below-normal summer surface air temperature.


2013 ◽  
Vol 26 (18) ◽  
pp. 7240-7266 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Ya-Li Yang ◽  
Xiao-Tong Zheng ◽  
Lin Liu ◽  
...  

Abstract This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Niño–Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean–atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Niño, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.


2017 ◽  
Vol 30 (21) ◽  
pp. 8517-8537 ◽  
Author(s):  
Fuyao Wang ◽  
Yan Yu ◽  
Michael Notaro ◽  
Jiafu Mao ◽  
Xiaoying Shi ◽  
...  

This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled control run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.


2015 ◽  
Vol 28 (13) ◽  
pp. 5017-5029 ◽  
Author(s):  
Jules B. Kajtar ◽  
Agus Santoso ◽  
Matthew H. England ◽  
Wenju Cai

Abstract The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air–sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow.


2008 ◽  
Vol 21 (21) ◽  
pp. 5727-5741 ◽  
Author(s):  
Renguang Wu

Abstract Analysis of observations shows that in-phase transitions from the Indian summer monsoon (ISM) to the Australian summer monsoon (ASM) have occurred both in El Niño–Southern Oscillation (ENSO) and non-ENSO years. The present study investigates possible roles of the Indian Ocean in the in-phase ISM-to-ASM transitions. It is shown that an anomalous ISM leads to sea surface temperature (SST) anomalies in the tropical Indian Ocean through wind–evaporation effects. The resultant Indian Ocean SST anomalies induce an anomalous ASM of the same sign as the ISM through an anomalous east–west circulation over the eastern Indian Ocean and the Maritime Continent–northern Australia. The results indicate that the in-phase ISM-to-ASM transitions in non-ENSO years can be accomplished through monsoon–Indian Ocean interactions. The results of observational analysis are confirmed with numerical model experiments.


Sign in / Sign up

Export Citation Format

Share Document