scholarly journals Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

2013 ◽  
Vol 14 (1) ◽  
pp. 275-289 ◽  
Author(s):  
Jiangfeng Wei ◽  
Paul A. Dirmeyer ◽  
Dominik Wisser ◽  
Michael G. Bosilovich ◽  
David M. Mocko

Abstract Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

2011 ◽  
Vol 4 (1) ◽  
pp. 45-63 ◽  
Author(s):  
T. Marke ◽  
W. Mauser ◽  
A. Pfeiffer ◽  
G. Zängl

Abstract. The present study investigates a statistical approach for the downscaling of climate simulations focusing on those meteorological parameters most commonly required as input for climate change impact models (temperature, precipitation, air humidity and wind speed), including the option to correct biases in the climate model simulations. The approach is evaluated by the utilization of a hydrometeorological model chain consisting of (i) the regional climate model MM5 (driven by reanalysis data at the boundaries of the model domain), (ii) the downscaling and model interface SCALMET, and (iii) the hydrological model PROMET. The results of four hydrological model runs are compared to discharge recordings at the gauge of the Upper Danube Watershed (Central Europe) for the historical period of 1972–2000 on a daily time basis. The comparison reveals that the presented approaches allow for a more accurate simulation of discharge for the catchment of the Upper Danube Watershed and the considered gauge at the outlet in Achleiten. The correction for subgrid-scale variability is shown to reduce biases in simulated discharge compared to the utilization of bilinear interpolation. Further enhancements in model performance could be achieved by a correction of biases in the RCM data within the downscaling process. Although the presented downscaling approach strongly improves the performance of the hydrological model, deviations from the observed discharge conditions persist that are not found when driving the hydrological model with spatially distributed meteorological observations.


Author(s):  
Robin Noyelle ◽  
Uwe Ulbrich ◽  
Nico Becker ◽  
Edmund P. Meredith

Abstract. The sensitivity of the October 1996 medicane in the western Mediterranean basin to sea surface temperatures (SSTs) is investigated via 24-member ensembles of regional climate model simulations. Eleven ensembles are created by uniformly changing SSTs in a range of −4 K to +6 K from the observed field, with a 1 K step. By using a modified phase space diagram and a simple compositing method, it is shown that the SST state has a minor influence on the tracks of the cyclones, but a strong influence on their intensities. Increased SSTs lead to greater probabilities of tropical transitions, to stronger low- and upper-level warm cores, and to lower pressure minima. The tropical transition occurs sooner and lasts longer, which enables a greater number of transitioning cyclones to survive landfall over Sardinia and to re-intensify in the Tyrrhenian Sea. The results demonstrate that SSTs influence the intensity of fluxes from the sea, which leads to greater convective activity before the storms reach their maturity. These results suggest that the processes at steady-state for medicanes are very similar to tropical cyclones.


2021 ◽  
Author(s):  
Saad Shauket Sammen ◽  
Thamer A Mohammed ◽  
Abdul Halim Ghazali ◽  
Lariyah M Sidek ◽  
Shamsuddin Shahid ◽  
...  

Abstract Increased extreme rainfall due to climate change will increase the probable maximum flood (PMF) and pose a severe threat the critical hydraulic infrastructure like hydroelectric and flood protection dams. As the rainfall extremes in tropical regions are highly sensitive to global warming, increase PMF can be much higher in the tropics. A study has been conducted to assess the impact of climate change on PMF in a tropical catchment located in peninsular Malaysia. A lumped hydrological model, Mike NAM, is calibrated and validated with observed climate and inflow data of Tenmengor reservoir, located in the state of Perak of Peninsular Malaysia. Regional climate model projected rainfall is used to generate probable maximum precipitation (PMP) for future periods. The hydrological model is used to simulate PMF from PMP estimated for the historical and two future periods, early (2031−2045) and late (2060−2075). The results revealed the NAM model could simulate the river flow with a Nash–Sutcliffe efficiency of 0.74 and root mean square error of 0.51. The application of the model with projected rainfall revealed an increase in PMP by 162 to 507% and 259 to 487% during early and late periods for different return periods ranging from 5 to 1000 years. This would cause an increase in PMF by 48.9% and 122.6% during early and late periods. A large increase in PMF indicates the possibility of devastating floods in the study area due to climate change.


2006 ◽  
Vol 6 (3) ◽  
pp. 387-395 ◽  
Author(s):  
S. Wang ◽  
R. McGrath ◽  
T. Semmler ◽  
C. Sweeney ◽  
P. Nolan

Abstract. The impact of climate change on local discharge variability is investigated in the Suir River Catchment which is located in the south-east of Ireland. In this paper, the Rossby Centre Regional Atmospheric Model (RCA) is driven by different global climate data sets. For the past climate (1961–2000), the model is driven by ECMWF reanalysis (ERA-40) data as well as by the output of the general circulation models (GCM's) ECHAM4 and ECHAM5. For the future simulation (2021–2060), the model is driven by two GCM scenarios: ECHAM4_B2 and ECHAM5_A2. To investigate the influence of changed future climate on local discharge, the precipitation of the model output is used as input for the HBV hydrological model. The calibration and validation results of our ERA-40 driven present day simulation shows that the HBV model can reproduce the discharge fairly well, except the extreme discharge is systematically underestimated by about 15–20%. Altogether the application of a high resolution regional climate model in connection with a conceptual hydrological model is capable of capturing the local variability of river discharge for present-day climate using boundary values assimilated with observations such as ERA-40 data. However, using GCM data to drive RCA and HBV suggests, that there is still large uncertainty connected with the GCM formulation: For present day climate the validation of the ECHAM4 and ECHAM5 driven simulations indicates stronger discharge compared to the observations due to overprediction of precipitation, especially for the ECHAM5 driven simulation in the summer season. Whereas according to the ECHAM4_B2 scenario the discharge generally increases – most pronounced in the wet winter time, there are only slight increases in winter and considerable decreases in summer according to the ECHAM5_A2 scenario. This also leads to a different behaviour in the evolution of return levels of extreme discharge events: Strong increases according to the ECHAM4_B2 scenario and slight decreases according to the ECHAM5_A2 scenario.


2020 ◽  
Author(s):  
Hans Van de Vyver ◽  
Joris Van den Bergh ◽  
Bert Van Schaeybroeck

<p>The characterization of droughts is very dependent on the time scale that is involved. To obtain an overall drought assessment, the cumulative effects of water deficits over different times need to be examined together. For instance, the joint deficit index (JDI) is based on multivariate probabilities of precipitation over various time scales from 1- to 12-months, and was constructed from empirical copulas. We examine the Gaussian copula model for the JDI, and we model the covariance across the temporal scales with a two-parameter function that is commonly used in the specific context of spatial statistics or geostatistics. The validity of the covariance models is demonstrated with long-term precipitation series.</p><p>Next, we assess the impact of climate change on future droughts, based on the JDI. We select an ensemble of CORDEX regional climate model simulations, under the emission pathways RCP4.5 and RCP8.5. The CORDEX resolution used is 0.11 degree (EUR-11). In particular, distributional changes in the JDI are analysed for the Brussels-Capital Region. This area contains climatological and synoptic stations that are operated by the Royal Meteorological Institute of Belgium, with long-term series.</p><p> </p>


2018 ◽  
Vol 146 (6) ◽  
pp. 1925-1944 ◽  
Author(s):  
Andreas Wagner ◽  
Dominikus Heinzeller ◽  
Sven Wagner ◽  
Thomas Rummler ◽  
Harald Kunstmann

An increase in the spatial resolution of regional climate model simulations improves the representation of land surface characteristics and may allow the explicit calculation of important physical processes such as convection. The present study investigates further potential benefits with respect to precipitation, based on a small ensemble of high-resolution simulations with WRF with grid spacings up to 1 km. The skill of each experiment is evaluated regarding the temporal and spatial performance of the simulation of precipitation of one year over both a mountainous region in southwestern Germany and a mainly flat region in northern Germany. This study allows us to differentiate between the impact of grid spacing, topography, and convection parameterization. Furthermore, the performance of a state-of-the-art convection parameterization scheme in the gray zone of convection is evaluated against an explicit calculation of convection only. Our evaluation demonstrates the following: high-resolution simulations (5 and 1 km) are generally able to represent the diurnal cycle, structure, and intensity distribution of precipitation, when compared to observational datasets such as radar data and interpolated station data. The influence of the improved representation of the topography at higher resolution (1 km) becomes apparent in complex terrain, where the localization of precipitation maxima is more accurate, although these maxima are overestimated. In flat areas, differences in spatial evaluations arise between simulations with parameterized and explicitly calculated convection, whereas smaller grid spacings (1 km vs 5 km) show hardly any impact on precipitation results.


Sign in / Sign up

Export Citation Format

Share Document