scholarly journals A Long-Term, High-Resolution Wetland Dataset over the Amazon Basin, Downscaled from a Multiwavelength Retrieval Using SAR Data

2013 ◽  
Vol 14 (2) ◽  
pp. 594-607 ◽  
Author(s):  
Filipe Aires ◽  
Fabrice Papa ◽  
Catherine Prigent

Abstract A climatology of wetlands has been derived at a low spatial resolution (0.25° × 0.25° equal-area grid) over a 15-yr period by combining visible and near-infrared satellite observations and passive and active microwaves. The objective of this study is to develop a downscaling technique able to retrieve wetland estimations at a higher spatial resolution (about 500 m). The proposed method uses an image-processing technique applied to synthetic aperture radar (SAR) information about the low and high wetland season. This method is tested over the densely vegetated basin of the Amazon. The downscaling results are satisfactory since they respect the spatial hydrological features of the SAR data and the temporal evolution of the low-resolution wetland estimates. A new long-term and high-resolution wetland dataset has been generated for 1993–2007 for the Amazon basin. This dataset represents a new and unprecedented source of information for climate and land surface modeling of the Amazon and for the definition of future hydrology-oriented satellite missions such as Surface Water and Ocean Topography (SWOT).

Author(s):  
G. Ruecker ◽  
G. Menz ◽  
S. Heinemann ◽  
M. Hartmann ◽  
D. Oertel

Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11μm) and in the mid infrared (1 or 2 MIR bands, at 4μm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m<sup>2</sup> possible. For high temperature phenomena such as vegetation- and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) “Active fire location” and “Fire Radiative Power” will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. <br><br> The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor’s line-of-sight with the aim to provide global coverage of cloud free imagery every 5&ndash;10 days with only one satellite (using near real time cloud cover information). VISIRSAT may be flown in convoy with Sentinel-3 and/or Sentinel-2.


2021 ◽  
Author(s):  
Joanna Joiner ◽  
Zachary Fasnacht ◽  
Bo-Cai Gao ◽  
Wenhan Qin

Satellite-based visible and near-infrared imaging of the Earth's surface is generally not performed in moderate to highly cloudy conditions; images that look visibly cloud covered to the human eye are typically discarded. Here, we expand upon previous work that employed machine learning (ML) to estimate underlying land surface reflectances at red, green, and blue (RGB) wavelengths in cloud contaminated spectra using a low spatial resolution satellite spectrometer. Specifically, we apply the ML methodology to a case study at much higher spatial resolution with the Hyperspectral Imager for the Coastal Ocean (HICO) that flew on the International Space Station (ISS). HICO spatial sampling is of the order of 90 m. The purpose of our case study is to test whether high spatial resolution features can be captured using multi-spectral imaging in lightly cloudy and overcast conditions. We selected one clear and one cloudy image over a portion ofthe panhandle coastline of Florida to demonstrate that land features are partially recoverable in overcast conditions. Many high contrast features are well recovered in the presence of optically thin clouds. However, some of the low contrast features, such as narrow roads, are smeared out in the heavily clouded part of the reconstructed image. This case study demonstrates that our approach may be useful for many science and applications that are being developed for current and upcoming satellite missions including precision agriculture and natural vegetation analysis, water quality assessment as well as disturbance, change, hazard, and disaster detection.


2019 ◽  
Vol 11 (7) ◽  
pp. 753 ◽  
Author(s):  
Guodong Zhang ◽  
Hongmin Zhou ◽  
Changjing Wang ◽  
Huazhu Xue ◽  
Jindi Wang ◽  
...  

Continuous, long-term sequence, land surface albedo data have crucial significance for climate simulations and land surface process research. Sensors such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) provide global albedo product data sets with a spatial resolution of 500 m over long time periods. There is demand for new high-resolution albedo data for regional applications. High-resolution observations are often unavailable due to cloud contamination, which makes it difficult to obtain time series albedo estimations. This paper proposes an “amalgamation albedo“ approach to generate daily land surface shortwave albedo with 30 m spatial resolution using Landsat data and the MODIS Bidirectional Reflectance Distribution Functions (BRDF)/Albedo product MCD43A3 (V006). Historical MODIS land surface albedo products were averaged to obtain an albedo estimation background, which was used to construct the albedo dynamic model . The Thematic Mapper (TM) albedo derived via direct estimation approach was then introduced to generate high spatial-temporal resolution albedo data based on the Ensemble Kalman Filter algorithm (EnKF). Estimation results were compared to field observations for cropland, deciduous broadleaf forest, evergreen needleleaf forest, grassland, and evergreen broadleaf forest domains. The results indicated that for all land cover types, the estimated albedos coincided with ground measurements at a root mean squared error (RMSE) of 0.0085–0.0152. The proposed algorithm was then applied to regional time series albedo estimation; the results indicated that it captured spatial and temporal variation patterns for each site. Taken together, our results suggest that the amalgamation albedo approach is a feasible solution to generate albedo data sets with high spatio-temporal resolution.


2001 ◽  
Vol 203 ◽  
pp. 501-504 ◽  
Author(s):  
J-F. Hochedez ◽  
F. Clette ◽  
E. Verwichte ◽  
D. Berghmans ◽  
P. Cugnon

Since the start of the SoHO mission, EIT -the Extreme ultraviolet Imaging Telescope- offers a global view of the solar corona over the whole rising phase of the current activity cycle. Such a dataset is unprecedented. We give here the current results of an on-going investigation over the entire EIT archive. In the Fe XV images (2 MK), the on-disk and off-disk intensity distributions have been evaluated, and their evolution is described. Additionally, we developed an image processing technique that extracts the smallest detectable features. The cosmic ray hits are statistically disentangled from the solar point-like phenomena, and the trends in both rates are assessed.


Author(s):  
Changmiao Hu ◽  
Ping Tang

In recent years, China's demand for satellite remote sensing images increased. Thus, the country launched a series of satellites equipped with high-resolution sensors. The resolutions of these satellites range from 30 m to a few meters, and the spectral range covers the visible to the near-infrared band. These satellite images are mainly used for environmental monitoring, mapping, land surface classification and other fields. However, haze is an important factor that often affects image quality. Thus, dehazing technology is becoming a critical step in high-resolution remote sensing image processing. This paper presents a rapid algorithm for dehazing based on a semi-physical haze model. Large-scale median filtering technique is used to extract large areas of bright, low-frequency information from images to estimate the distribution and thickness of the haze. Four images from different satellites are used for experiment. Results show that the algorithm is valid, fast, and suitable for the rapid dehazing of numerous large-sized high-resolution remote sensing images in engineering applications.


2019 ◽  
Vol 11 (19) ◽  
pp. 2304 ◽  
Author(s):  
Hanna Huryna ◽  
Yafit Cohen ◽  
Arnon Karnieli ◽  
Natalya Panov ◽  
William P. Kustas ◽  
...  

A spatially distributed land surface temperature is important for many studies. The recent launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal images, the sharpening resulted in mean absolute errors of ~1 °C, with errors increasing as the difference between the native and the target resolutions increases. Part of the error is attributed to the discrepancy between the thermal images acquired by the two platforms. Further research is due to test additional sites and conditions, and potentially additional sharpening methods, applied to the Sentinel platforms.


2007 ◽  
Vol 1022 ◽  
Author(s):  
Gilles Tessier ◽  
Mathieu Bardoux ◽  
Céline Filloy ◽  
Danièle Fournier

AbstractThermoreflectance is an non contact optical method using the local reflectivity variations induced by heating to infer temperature mappings, and can be conducted at virtually any wavelength. In the visible, the technique is now well established. It can probe temperatures through several micrometers of transparent encapsulation layers, with sub-micron spatial resolution and 100 mK thermal resolution. In the ultraviolet range, dielectric encapsulation layers are opaque and thermoreflectance gives access to the surface temperature. In the near infrared, thermoreflectance is an interesting solution to examine chips turned upside down, since these wavelengths can penetrate through silicon substrates and give access to the temperature of the active layers themselves. Here, we explore the possibilities of each wavelength range and detail the CCD-based thermal imaging tools dedicated to the high resolution inspection of integrated circuits.


2021 ◽  
Author(s):  
Jianglei Xu ◽  
Shunlin Liang ◽  
Bo Jiang

Abstract. The surface radiation budget, also known as all-wave net radiation (Rn), is a key parameter for various land surface processes including hydrological, ecological, agricultural, and biogeochemical processes. Satellite data can be effectively used to estimate Rn, but existing satellite products have coarse spatial resolutions and limited temporal coverage. In this study, a point-surface matching estimation (PSME) method is proposed to estimate surface Rn using a residual convolutional neural network (RCNN) integrating spatially adjacent information to improve the accuracy of retrievals. A global high-resolution (0.05°) long-term (1981–2019) Rn product was subsequently generated from Advanced Very High-Resolution Radiometer (AVHRR) data. Specifically, the RCNN was employed to establish a nonlinear relationship between globally distributed ground measurements from 537 sites and AVHRR top of atmosphere (TOA) observations. Extended triplet collocation (ETC) technology was applied to address the spatial scale mismatch issue resulting from the low spatial support of ground measurements within the AVHRR footprint by selecting reliable sites for model training. The overall independent validation results show that the generated AVHRR Rn product is highly accurate, with R2, root-mean-square error (RMSE), and bias of 0.84, 26.66 Wm−2 (31.66 %), and 1.59 Wm−2 (1.89 %), respectively. Inter-comparisons with three other Rn products, i.e., the 5 km Global Land Surface Satellite (GLASS), the 1° Clouds and the Earth's Radiant Energy System (CERES), and the 0.5° × 0.625° Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), illustrate that our AVHRR Rn retrievals have the best accuracy under all of the considered surface and atmospheric conditions, especially thick cloud or hazy conditions. The spatiotemporal analyses of these four Rn datasets indicate that the AVHRR Rn product reasonably replicates the spatial pattern and temporal evolution trends of Rn observations. This dataset is freely available at https://doi.org/10.5281/zenodo.5509854 for 1981–2019 (Xu et al., 2021).


2021 ◽  
Vol 13 (3) ◽  
pp. 907-922
Author(s):  
Fei Feng ◽  
Kaicun Wang

Abstract. Although great progress has been made in estimating surface solar radiation (Rs) from meteorological observations, satellite retrieval, and reanalysis, getting best-estimated long-term variations in Rs are sorely needed for climate studies. It has been shown that Rs data derived from sunshine duration (SunDu) can provide reliable long-term variability, but such data are available at sparsely distributed weather stations. Here, we merge SunDu-derived Rs with satellite-derived cloud fraction and aerosol optical depth (AOD) to generate high-spatial-resolution (0.1∘) Rs over China from 2000 to 2017. The geographically weighted regression (GWR) and ordinary least-squares regression (OLS) merging methods are compared, and GWR is found to perform better. Based on the SunDu-derived Rs from 97 meteorological observation stations, which are co-located with those that direct Rs measurement sites, the GWR incorporated with satellite cloud fraction and AOD data produces monthly Rs with R2=0.97 and standard deviation =11.14 W m−2, while GWR driven by only cloud fraction produces similar results with R2=0.97 and standard deviation =11.41 W m−2. This similarity is because SunDu-derived Rs has included the impact of aerosols. This finding can help to build long-term Rs variations based on cloud data, such as Advanced Very High Resolution Radiometer (AVHRR) cloud retrievals, especially before 2000, when satellite AOD retrievals are not unavailable. The merged Rs product at a spatial resolution of 0.1∘ in this study can be downloaded at https://doi.org/10.1594/PANGAEA.921847 (Feng and Wang, 2020).


2021 ◽  
Vol 13 (5) ◽  
pp. 2001-2023
Author(s):  
Zhen Zhang ◽  
Etienne Fluet-Chouinard ◽  
Katherine Jensen ◽  
Kyle McDonald ◽  
Gustaf Hugelius ◽  
...  

Abstract. Seasonal and interannual variations in global wetland area are a strong driver of fluctuations in global methane (CH4) emissions. Current maps of global wetland extent vary in their wetland definition, causing substantial disagreement between and large uncertainty in estimates of wetland methane emissions. To reconcile these differences for large-scale wetland CH4 modeling, we developed the global Wetland Area and Dynamics for Methane Modeling (WAD2M) version 1.0 dataset at a ∼ 25 km resolution at the Equator (0.25∘) at a monthly time step for 2000–2018. WAD2M combines a time series of surface inundation based on active and passive microwave remote sensing at a coarse resolution with six static datasets that discriminate inland waters, agriculture, shoreline, and non-inundated wetlands. We excluded all permanent water bodies (e.g., lakes, ponds, rivers, and reservoirs), coastal wetlands (e.g., mangroves and sea grasses), and rice paddies to only represent spatiotemporal patterns of inundated and non-inundated vegetated wetlands. Globally, WAD2M estimates the long-term maximum wetland area at 13.0×106 km2 (13.0 Mkm2), which can be divided into three categories: mean annual minimum of inundated and non-inundated wetlands at 3.5 Mkm2, seasonally inundated wetlands at 4.0 Mkm2 (mean annual maximum minus mean annual minimum), and intermittently inundated wetlands at 5.5 Mkm2 (long-term maximum minus mean annual maximum). WAD2M shows good spatial agreements with independent wetland inventories for major wetland complexes, i.e., the Amazon Basin lowlands and West Siberian lowlands, with Cohen's kappa coefficient of 0.54 and 0.70 respectively among multiple wetland products. By evaluating the temporal variation in WAD2M against modeled prognostic inundation (i.e., TOPMODEL) and satellite observations of inundation and soil moisture, we show that it adequately represents interannual variation as well as the effect of El Niño–Southern Oscillation on global wetland extent. This wetland extent dataset will improve estimates of wetland CH4 fluxes for global-scale land surface modeling. The dataset can be found at https://doi.org/10.5281/zenodo.3998454 (Zhang et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document