scholarly journals The Importance of Near-Surface Winter Precipitation Processes in Complex Alpine Terrain

2019 ◽  
Vol 20 (2) ◽  
pp. 177-196 ◽  
Author(s):  
Franziska Gerber ◽  
Rebecca Mott ◽  
Michael Lehning

Abstract In this study, near-surface snow and graupel dynamics from formation to deposition are analyzed using WRF in a large-eddy configuration. The results reveal that a horizontal grid spacing of ≤50 m is required to resolve local orographic precipitation enhancement, leeside flow separation, and thereby preferential deposition. At this resolution, precipitation patterns across mountain ridges show a high temporal and spatial variability. Simulated and observed event-mean snow precipitation across three mountain ridges in the upper Dischma valley (Davos, Switzerland) for two precipitation events show distinct patterns, which are in agreement with theoretical concepts, such as small-scale orographic precipitation enhancement or preferential deposition. We found for our case study that overall terrain–flow–precipitation interactions increase snow accumulation on the leeward side of mountain ridges by approximately 26%–28% with respect to snow accumulation on the windward side of the ridge. Cloud dynamics and mean advection may locally increase precipitation on the leeward side of the ridge by up to about 20% with respect to event-mean precipitation across a mountain ridge. Analogously, near-surface particle–flow interactions, that is, preferential deposition, may locally enhance leeward snow precipitation on the order of 10%. We further found that overall effect and relative importance of terrain–flow–precipitation interactions are strongly dependent on atmospheric humidity and stability. Weak dynamic stability is important for graupel production, which is an essential component of solid winter precipitation. A comparison to smoothed measurements of snow depth change reveals a certain agreement with simulated precipitation across mountain ridges.

2009 ◽  
Vol 24 (4) ◽  
pp. 1009-1031 ◽  
Author(s):  
Maximiliano Viale ◽  
Federico A. Norte

Abstract The most intense orographic precipitation event over the subtropical central Andes (36°–30°S) during winter 2005 was examined using observational data and a regional model simulation. The Eta-Programa Regional de Meteorología (PRM) model forecast was evaluated and used to explore the airflow structure that generated this heavy precipitation event, with a focus on orographic influences. Even though the model did not realistically reproduce any near-surface variables, nor the precipitation shadow in the leeside lowlands, its reliable forecast of heavy precipitation over the windward side and the wind fields suggests that it can be used as a valuable forecasting tool for such events in the region. The synoptic flow of the 26–29 August 2005 storm responded to a well-defined dipole from low to upper levels with anomalous low (high) geopotential heights at midlatitudes (subtropical) latitudes located off the southeast Pacific coast, resulting in a large meridional geopotential height gradient that drove a strong anomalous cross-barrier flow. Precipitation enhancement in the Andes was observed during the entire event; however, the highest rates were in the prefrontal sector under the low-level stable stratification and cross-barrier winds exceeding 2.5 standard deviations (σ) from the climatological monthly mean. The combination of strong cross-mountain winds with the stable stratification in the air mass of a frontal system, impinging on the high Andes range, appears to be the major factor in determining the flow structure that produced the pattern of precipitation enhancement, with uplift maximized near mountaintops and low-level blocking upwindleading to the formation of a low-level along-barrier jet. Additionally, only the upstream wind anomalies for the 15 heaviest events over a 10-yr (1967–76) period were investigated. They exhibited strong anomalous northwesterly winds for 14 of the 15 events, whereas for the remaining event there were no available observations to evaluate. Thus, these anomalies may also be exploited for forecasting capabilities.


2008 ◽  
Vol 65 (8) ◽  
pp. 2522-2542 ◽  
Author(s):  
Andreas Muhlbauer ◽  
Ulrike Lohmann

Abstract Aerosols serve as a source of cloud condensation nuclei (CCN) and influence the microphysical properties of clouds. In the case of orographic clouds, it is suspected that aerosol–cloud interactions reduce the amount of precipitation on the upslope side of the mountain and enhance the precipitation on the downslope side when the number of aerosols is increased. The net effect may lead to a shift of the precipitation distribution toward the leeward side of mountain ranges, which affects the hydrological cycle on the local scale. In this study aerosol–cloud interactions in warm-phase clouds and the possible impact on the orographic precipitation distribution are investigated. Herein, simulations of moist orographic flow over topography are conducted and the influence of anthropogenic aerosols on the orographic precipitation formation is analyzed. The degree of aerosol pollution is prescribed by different aerosol spectra that are representative for central Switzerland. The simulations are performed with the Consortium for Small-Scale Modeling’s mesoscale nonhydrostatic limited-area weather prediction model (COSMO) with a horizontal grid spacing of 2 km and a fully coupled aerosol–cloud parameterization. It is found that an increase in the aerosol load leads to a downstream shift of the orographic precipitation distribution and to an increase in the spillover factor. A reduction of warm-phase orographic precipitation is observed at the upslope side of the mountain. The downslope precipitation enhancement depends critically on the width of the mountain and on the flow dynamics. In the case of orographic precipitation induced by stably stratified unblocked flow, the loss in upslope precipitation is not compensated by leeward precipitation enhancement. In contrast, flow blocking may lead to leeward precipitation enhancement and eventually to a compensation of the upslope precipitation loss. The simulations also indicate that latent heat effects induced by aerosol–cloud–precipitation interactions may considerably affect the orographic flow dynamics and consequently feed back on the orographic precipitation development.


2018 ◽  
Vol 12 (10) ◽  
pp. 3137-3160 ◽  
Author(s):  
Franziska Gerber ◽  
Nikola Besic ◽  
Varun Sharma ◽  
Rebecca Mott ◽  
Megan Daniels ◽  
...  

Abstract. Snow distribution in complex alpine terrain and its evolution in the future climate is important in a variety of applications including hydropower, avalanche forecasting and freshwater resources. However, it is still challenging to quantitatively forecast precipitation, especially over complex terrain where the interaction between local wind and precipitation fields strongly affects snow distribution at the mountain ridge scale. Therefore, it is essential to retrieve high-resolution information about precipitation processes over complex terrain. Here, we present very-high-resolution Weather Research and Forecasting model (WRF) simulations (COSMO–WRF), which are initialized by 2.2 km resolution Consortium for Small-scale Modeling (COSMO) analysis. To assess the ability of COSMO–WRF to represent spatial snow precipitation patterns, they are validated against operational weather radar measurements. Estimated COSMO–WRF precipitation is generally higher than estimated radar precipitation, most likely due to an overestimation of orographic precipitation enhancement in the model. The high precipitation amounts also lead to a higher spatial variability in the model compared to radar estimates. Overall, an autocorrelation and scale analysis of radar and COSMO–WRF precipitation patterns at a horizontal grid spacing of 450 m show that COSMO–WRF captures the spatial variability normalized by the domain-wide variability in precipitation patterns down to the scale of a few kilometers. However, simulated precipitation patterns systematically show a lower variability on the smallest scales of a few hundred meters compared to radar estimates. A comparison of spatial variability for different model resolutions gives evidence for an improved representation of local precipitation processes at a horizontal resolution of 50 m compared to 450 m. Additionally, differences of precipitation between 2830 m above sea level and the ground indicate that near-surface processes are active in the model.


2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


2021 ◽  
Author(s):  
Benjamin Stocker ◽  
Shersingh Tumber-Davila ◽  
Alexandra Konings ◽  
Rob Jackson

<p>The rooting zone water storage capacity (S) defines the total amount of water available to plants for transpiration during rain-free periods. Thereby, S determines the sensitivity of carbon and water exchanges between the land surface and the atmosphere, controls the sensitivity of ecosystem functioning to progressive drought conditions, and mediates feedbacks between soil moisture and near-surface air temperatures. While being a central quantity for water-carbon-climate coupling, S is inherently difficult to observe. Notwithstanding scarcity of observations, terrestrial biosphere and Earth system models rely on the specification of S either directly or indirectly through assuming plant rooting depth.</p><p>Here, we model S based on the assumption that plants size their rooting depth to maintain function under the expected maximum cumulative water deficit (CWD), occurring with a return period of 40 years (CWD<sub>X40</sub>), following Gao et al. (2014). CWD<sub>X40</sub> is “translated” into a rooting depth by accounting for the soil texture. CWD is defined as the cumulative evapotranspiration (ET) minus precipitation, where ET is estimated based on thermal infrared remote sensing (ALEXI-ET), and precipitation is from WATCH-WFDEI, modified by accounting for snow accumulation and melt. In contrast to other satellite remote sensing-based ET products, ALEXI-ET makes no a priori assumption about S and, as our evaluation shows, exhibits no systematic bias with increasing CWD. It thus provides a robust observation of surface water loss and enables estimation of S with global coverage at 0.05° (~5 km) resolution.</p><p>Modelled S and its variations across biomes is largely consistent with observed rooting depth, provided as ecosystem-level maximum estimates by Schenk et al. (2002), and a recently compiled comprehensive plant-level dataset. In spite of the general agreement of modelled and observed rooting depth across large climatic gradients, comparisons between local observations and global model predictions are mired by a scale mismatch that is particularly relevant for plant rooting depth, for which the small-scale topographical setting and hydrological conditions, in particular the water table depth, pose strong controls.</p><p>To resolve this limitation, we investigate the sensitivity of photosynthesis (estimated by sun-induced fluorescence, SIF), and of the evaporative fraction (EF, defined as ET over net radiation) to CWD. By employing first principles for the constraint of rooting zone water availability on ET and photosynthesis, it can be derived how their sensitivity to the increasing CWD relates to S. We make use of this relationship to provide an alternative and independent estimate of S (S<sub>dSIF</sub> and S<sub>dEF</sub>), informed by Earth observation data, to which S, modelled using CWD<sub>X40</sub>, can be compared. Our comparison reveals a strong correlation (R<sup>2</sup>=0.54) and tight consistency in magnitude between the two approaches for estimating S. </p><p>Our analysis suggests adaptation of plant structure to prevailing climatic conditions and drought regimes across the globe and at catchment scale and demonstrates its implications for land-atmosphere exchange. Our global high-resolution mapping of S reveals contrasts between plant growth forms (grasslands vs. forests) and a discrepant importance across the landscape of plants’ access to water stored at depth, and enables an observation-informed specification of S in global models.</p>


2020 ◽  
Author(s):  
Thore Kausch ◽  
Stef Lhermitte ◽  
Jan T.M. Lenaerts ◽  
Nander Wever ◽  
Mana Inoue ◽  
...  

<p>About 20% of all snow accumulation in Antarctica occurs on the ice shelfs and ice rises, locations within the ice shelf where the ice is locally grounded on topography. These ice rises largely control the spatial surface mass balance (SMB) distribution by inducing snowfall variability due to orographic uplift and by inducing wind erosion due altering the wind conditions. Moreover these ice rises buttress the ice flow and represent an ideal drilling locations for ice cores.</p><p>In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO, and the implications of this SMB variability for ice rises as an ice core drilling side. By combining ground penetrating radar profiles from two ice rises in Dronning Maud Land with ice core dating we reconstruct spatial and temporal SMB variations across both ice rises from 1982 to 2017. Subsequently, the observed SMB is compared with output from RACMO, SnowModel to quantify the contribution of the different processes that control the spatial SMB variability across the ice rises. Finally, the observed SMB is compared with Sentinel-1 backscatter data to extrapolate spatial SMB trends over larger areas.</p><p>Our results show snowfall-driven differences of up to ~ 0.24 m w.e./yr between the windward and the leeward side of both ice rises as well as a local erosion driven minimum at the peak of the ice rises. RACMO captures the snowfall-driven differences, but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO forcing. Observed temporal variability of the average SMBs calculated for 4 time intervals in the 1982-2017 range are low at the peak of the easternmost ice rise (~ 0.03 m w.e./yr), while being three times higher (~ 0.1 m w.e./yr) on the windward side of the ice rise. This implicates that at the peak of the ice rise, higher snowfall, driven by regional processes, such as orographic uplift, is balanced out by local erosion.  Comparison of the observed SMB gradients with Sentinel-1 data finally shows the potential of SAR satellite observations to represent spatial variability in SMB across ice shelves and ice rises.</p>


Author(s):  
Pallav Ray ◽  
Haochen Tan ◽  
Mukul Tewari ◽  
James Brownlee ◽  
R. S. Ajayamohan ◽  
...  

AbstractThe role of advection of heat and momentum on the evolution of near-surface temperature and wind is evaluated in urban-aware simulations over Houston under dry conditions on a light-wind day. Two sets of experiments, each consisting of four simulations using different planetary boundary layer (PBL) schemes, were conducted over 48 hours using the default urban scheme (BULK) and the single-layer urban canopy model (SLUCM) available within the Weather Research and Forecasting (WRF) model. We focus on understanding and quantifying the role played by temperature and momentum advection, particularly on the windward and leeward sides of the city. Previous studies have largely ignored any quantitative analysis of impacts from the advection of momentum over an urban area.The horizontal advection of temperature was found to be more important in the BULK because of the larger surface temperature gradient caused by warmer surface temperatures over urban areas than in the SLUCM. An analysis of the momentum budget shows that horizontal advection of zonal and meridional momentum plays a prominent role during the period of peak near-surface winds, and this effect is more pronounced in the windward side of the city. The local tendency in peak winds in the leeward side lags that in the windward side by about 1-2 hours, similar to the lag found in horizontal momentum advection. The sensitivity of the results to different urban and PBL schemes was explored. The results imply that representation and influence of land-use patterns via sophisticated urban parameterizations generates locally driven winds that best resemble observations.


Author(s):  
C. David Whiteman

Winds associated with mountainous terrain are generally of two types. Terrain-forced flows are produced when large-scale winds are modified or channeled by the underlying complex terrain. Diurnal mountain winds are produced by temperature contrasts that form within the mountains or between the mountains and the surrounding plains and are therefore also called thermally driven circulations. Terrain-forced flows and diurnal mountain winds are nearly always combined to some extent. Both can occur in conjunction with small-scale winds, such as thunderstorm inflows and outflows, or with large-scale winds that are not influenced by the underlying mountainous terrain. Terrain forcing can cause an air flow approaching a mountain barrier to be carried over or around the barrier, to be forced through gaps in the barrier, or to be blocked by the barrier. Three factors determine the behavior of an approaching flow in response to a mountain barrier: •the stability of the air approaching the mountains, •the speed of the air flow approaching the mountains, and •the topographic characteristics of the underlying terrain. Unstable or neutrally stable air (section 4.3) is easily carried over a mountain barrier. The behavior of stable air approaching a mountain barrier depends on the degree of stability, the speed of the approaching flow, and the terrain characteristics. The more stable the air, the more resistant it is to lifting and the greater the likelihood that it will flow around, be forced through gaps in the barrier, or be blocked by the barrier. A layer of stable air can split, with air above the dividing streamline height flowing over the mountain barrier and air below the dividing streamline height splitting upwind of the mountains, flowing around the barrier (figure 10.1), and reconverging on the leeward side (section 10.3.2). A very stable approaching flow may be blocked on the windward side of the barrier (section 10.5.1). Moderate to strong cross-barrier winds are necessary to produce terrain-forced flows, which therefore occur most frequently in areas of cyclogenesis (section 5.1) or where low pressure systems (figure 1.3) or jet streams (section 5.2.1.3) are commonly found. Whereas unstable and neutral flows are easily lifted over a mountain barrier, even by moderate winds, strong cross-barrier winds are needed to carry stable air over a mountain barrier.


2011 ◽  
Vol 12 (4) ◽  
pp. 481-507 ◽  
Author(s):  
Maximiliano Viale ◽  
Mario N. Nuñez

Abstract Winter orographic precipitation over the Andes between 30° and 37°S is examined using precipitation gauges in the mountains and adjacent lowlands. Because of the limited number of precipitation gauges, this paper focuses on the large-scale variation in cross-barrier precipitation and does not take into account the fine ridge–valley scale. The maximum amount of precipitation was observed on the windward slope of the mountain range below the crest, which was twice that observed on the low-windward side between 32.5° and 34°S. Toward the east of the crest, precipitation amounts drop sharply, generating a strong cross-barrier gradient. The rain shadow effect is greater in the north (32°–34.5°S) than in the south (35°–36.5°S) of the low-lee side, which is probably due to more baroclinic activity in southernmost latitudes and a southward decrease in the height of the Andes enabling more spillover precipitation. The effect of the Andes on winter precipitation is so marked that it modifies the precipitation regimes in the adjacent windward and leeward lowlands north of 35°S. Based on the fact that ~75% of the wintertime precipitation accumulated in the fourth quartile, through four or five heavy events on average, the synoptic-scale patterns of the heavy (into fourth quartile) orographic precipitation events were identified. Heavy events are strongly related to strong water vapor transport from the Pacific Ocean in the pre-cold-front environment of extratropical cyclones, which would have the form of atmospheric rivers as depicted in the reanalysis and rawinsonde data. The composite fields revealed a marked difference between two subgroups of heavy precipitation events. The extreme (100th–95th percentiles) events are associated with deeper cyclones than those for intense (95th–75th percentiles) events. These deeper cyclones lead to much stronger plumes of water vapor content and cross-barrier moisture flux against the high Andes, resulting in heavier orographic precipitation for extreme events. In addition, regional airflow characteristics suggest that the low-level flow is typically blocked and diverted poleward in the form of an along-barrier jet. On the lee side, downslope flow dominates during heavy events, producing prominent rain shadow effects as denoted by the domain of downslope winds extending to low-leeward side (i.e., zonda wind).


Sign in / Sign up

Export Citation Format

Share Document