scholarly journals Climatic Controls on Future Hydrologic Changes in a Subarctic River Basin in Canada

2019 ◽  
Vol 20 (9) ◽  
pp. 1757-1778 ◽  
Author(s):  
Rajesh R. Shrestha ◽  
Alex J. Cannon ◽  
Markus A. Schnorbus ◽  
Hunter Alford

Abstract We describe a state-of-the-art framework for projecting hydrologic impacts due to enhanced warming and amplified moisture fluxes in the subarctic environment under anthropogenic climate change. We projected future hydrologic changes based on phase 5 of the Coupled Model Intercomparison Project global climate model simulations using the Variable Infiltration Capacity hydrologic model and a multivariate bias correction/downscaling method for the Liard basin in subarctic northwestern Canada. Subsequently, the variable importance of key climatic controls on a set of hydrologic indicators was analyzed using the random forests statistical model. Results indicate that enhanced warming and wetness by the end of century would lead to pronounced declines in annual and monthly snow water equivalent (SWE) and earlier maximum SWE. Prominent changes in the streamflow regime include increased annual mean and minimum flows, earlier maximum flows, and either increased or decreased maximum flows depending on interactions between temperature, precipitation, and snow. Using the variable importance analysis, we find that precipitation exerts the primary control on maximum SWE and annual mean and maximum flows, and temperature has the main influence on timings of maximum SWE and flow, and minimum flow. Given these climatic controls, the changes in the hydrologic indicators become progressively larger under the scenarios of 1.5°, 2.0°, and 3.0°C global mean temperature increases above the preindustrial period. Hence, the framework presented in this study provides a detailed diagnosis of the hydrologic changes as well as controls and interactions of the climatic variables, which could be generalized for understanding regional scale changes in subarctic/nival basins.

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1617
Author(s):  
Yonas B. Dibike ◽  
Rajesh R. Shrestha ◽  
Colin Johnson ◽  
Barrie Bonsal ◽  
Paulin Coulibaly

Flows originating from cold and mountainous watersheds are highly dependent on temperature and precipitation patterns, and the resulting snow accumulation and melt conditions, affecting the magnitude and timing of annual peak flows. This study applied a multiple linear regression (MLR) modelling framework to investigate spatial variations and relative importance of hydroclimatic drivers of annual maximum flows (AMF) and mean spring flows (MAMJflow) in 25 river basins across western Canada. The results show that basin average maximum snow water equivalent (SWEmax), April 1st SWE and spring precipitation (MAMJprc) are the most important predictors of both AMF and MAMJflow, with the proportion of explained variance averaging 51.7%, 44.0% and 33.5%, respectively. The MLR models’ abilities to project future changes in AMF and MAMJflow in response to changes to the hydroclimatic controls are also examined using the Canadian Regional Climate Model (CanRCM4) output for RCP 4.5 and RCP8.5 scenarios. The results show considerable spatial variations depending on individual watershed characteristics with projected changes in AMF ranging from −69% to +126% and those of MAMJflow ranging from −48% to +81% by the end of this century. In general, the study demonstrates that the MLR framework is a useful approach for assessing the spatial variation in hydroclimatic controls of annual maximum and mean spring flows in the western Canadian river basins. However, there is a need to exercise caution in applying MLR models for projecting changes in future flows, especially for regulated basins.


2018 ◽  
Vol 12 (3) ◽  
pp. 891-905 ◽  
Author(s):  
Andrew M. Snauffer ◽  
William W. Hsieh ◽  
Alex J. Cannon ◽  
Markus A. Schnorbus

Abstract. Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


2011 ◽  
Vol 21 (12) ◽  
pp. 3577-3587 ◽  
Author(s):  
KLAUS FRAEDRICH ◽  
FRANK SIELMANN

A biased coinflip Ansatz provides a stochastic regional scale surface climate model of minimum complexity, which represents physical and stochastic properties of the rainfall–runoff chain. The solution yields the Schreiber–Budyko relation as an equation of state describing land surface vegetation, river runoff and lake areas in terms of physical flux ratios, which are associated with three thresholds. Validation of consistency and predictability within a Global Climate Model (GCM) environment demonstrates the stochastic rainfall–runoff chain to be a viable surrogate model for regional climate state averages and variabilites. A terminal (closed) lake area ratio is introduced as a new climate state parameter, which quantifies lake overflow as a threshold in separating water from energy limited climate regimes. A climate change analysis based on the IPCC A1B scenario is included for completeness.


2019 ◽  
Author(s):  
Mario Krapp ◽  
Robert Beyer ◽  
Stephen L. Edmundson ◽  
Paul J. Valdes ◽  
Andrea Manica

Abstract. A detailed and accurate reconstruction of the past climate is essential in understanding the interactions between ecosystems and their environment through time. We know that climatic drivers have shaped the distribution and evolution of species, including our own, and their habitats. Yet, spatially-detailed climate reconstructions that continuously cover the Quaternary do not exist. This is mainly because no paleoclimate model can reconstruct regional-scale dynamics over geological time scales. Here we develop a statistical emulator, the Global Climate Model Emulator (GCMET), which reconstructs the climate of the last 800 000 years with unprecedented spatial detail. GCMET captures the temporal dynamics of glacial-interglacial climates as an Earth System Model of Intermediate Complexity would whilst resolving the local dynamics with the accuracy of a Global Climate Model. It provides a new, unique resource to explore the climate of the Quaternary, which we use to investigate the long-term stability of major habitat types. We identify a number of stable pockets of habitat that have remained unchanged over the last 800 thousand years, acting as potential long-term evolutionary refugia. Thus, the highly detailed, comprehensive overview of climatic changes through time delivered by GCMET provides the needed resolution to quantify the role of long term habitat change and fragmentation in an ecological and anthropological context.


2012 ◽  
Vol 25 (2) ◽  
pp. 527-542 ◽  
Author(s):  
Christopher B. Skinner ◽  
Moetasim Ashfaq ◽  
Noah S. Diffenbaugh

Abstract The persistence of extended drought events throughout West Africa during the twentieth century has motivated a substantial effort to understand the mechanisms driving African climate variability as well as the possible response to elevated greenhouse gas (GHG) forcing. An ensemble of global climate model experiments is used to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. The authors find that projected increases in precipitation throughout the western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa, and an intensification of the tropical easterly jet (TEJ). Alternatively, the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ as well as a decrease in low-level convergence and resultant rising air throughout the midlevels of the troposphere. Experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.


2018 ◽  
Vol 75 (7) ◽  
pp. 2355-2369 ◽  
Author(s):  
Morten D Skogen ◽  
Solfrid S Hjøllo ◽  
Anne Britt Sandø ◽  
Jerry Tjiputra

Abstract The biogeochemistry from a global climate model (Norwegian Earth System Model) has been compared with results from a regional model (NORWECOM.E2E), where the regional model is forced by downscaled physics from the global model. The study should both be regarded as a direct comparison between a regional and its driving global model to investigate at what extent a global climate model can be used for regional studies, and a study of the future climate change in the Nordic and Barents Seas. The study concludes that the global and regional model compare well on trends, but many details are lost when a coarse resolution global model is used to assess climate impact on regional scale. The main difference between the two models is the timing of the spring bloom, and a non-exhaustive nutrient consumption in the global model in summer. The global model has a cold (in summer) and saline bias compared with climatology. This is both due to poorly resolved physical processes and oversimplified ecosystem parameterization. Through the downscaling the regional model is to some extent able to alleviate the bias in the physical fields, and the timing of the spring bloom is close to observations. The summer nutrient minimum is one month early. There is no trend in future primary production in any of the models, and the trends in modelled pH and ΩAr are also the same in both models. The largest discrepancy in the future projection is in the development of the CO2 uptake, where the regional suggests a slightly reduced uptake in the future.


2013 ◽  
Vol 10 (8) ◽  
pp. 10313-10332 ◽  
Author(s):  
K.-H. Wyrwoll ◽  
F. H. McRobie ◽  
M. Notaro ◽  
G. Chen

Abstract. Here we pose the question: was there a downturn in summer monsoon precipitation over northern Australia due to Aboriginal vegetation practices over prehistoric time scales? In answering this question we consider the results from a global climate model incorporating ocean, land, ice, atmosphere and vegetation interactions, reducing the total vegetation cover over northern Australia by 20% to simulate the effects of burning. The results suggest that burning forests and woodlands in the monsoon region of Australia led to a shift in the regional climate, with a delayed monsoon onset and reduced precipitation in the months preceding the "full" monsoon. We place these results in a global context, drawing on model results from five other monsoon regions, and note that although the precipitation response is highly varied, there is a general but region specific climate response to reduced vegetation cover in all cases. Our findings lead us to conclude that large-scale vegetation modification over millennial time-scales due to indigenous burning practices, would have had significant impacts on regional climates. With this conclusion comes the need to recognise that the Anthropocene saw the impact of humans on regional-scale climates and hydrologies at much earlier times than generally recognized.


2014 ◽  
Vol 15 (2) ◽  
pp. 844-860 ◽  
Author(s):  
Rajesh R. Shrestha ◽  
Markus A. Schnorbus ◽  
Arelia T. Werner ◽  
Francis W. Zwiers

Abstract This study analyzed potential hydroclimatic change in the Peace River basin in the province of British Columbia, Canada, based on two structurally different approaches: (i) statistically downscaled global climate models (GCMs) using the bias-corrected spatial disaggregation (BCSD) and (ii) dynamically downscaled GCM with the Canadian Regional Climate Model (CRCM). Additionally, simulated hydrologic changes from the GCM–BCSD-driven Variable Infiltration Capacity (VIC) model were compared to the CRCM integrated Canadian Land Surface Scheme (CLASS) output. The results show good agreements of the GCM–BCSD–VIC simulated precipitation, temperature, and runoff with observations, while the CRCM-simulated results differ substantially from observations. Nevertheless, differences (between the 2050s and 1970s) obtained from the two approaches are qualitatively similar for precipitation and temperature, although they are substantially different for snow water equivalent and runoff. The results obtained from the five Coupled Global Climate Model, version 3, (CGCM3)-driven CRCM runs are similar, suggesting that the multidecadal internal variability is not a large source of uncertainty for the Peace River basin. Overall, the GCM–BCSD–VIC approach, for now, remains the preferred approach for projecting basin-scale future hydrologic changes, provided that it explicitly accounts for the biases and includes plausible snow and runoff parameterizations. However, even with the GCM–BCSD–VIC approach, projections differ considerably depending on which of an ensemble of eight GCMs is used. Such differences reemphasize the uncertain nature of future hydroclimatic projections.


2014 ◽  
Vol 15 (5) ◽  
pp. 1881-1899 ◽  
Author(s):  
Eric P. Salathé ◽  
Alan F. Hamlet ◽  
Clifford F. Mass ◽  
Se-Yeun Lee ◽  
Matt Stumbaugh ◽  
...  

Abstract Results from a regional climate model simulation show substantial increases in future flood risk (2040–69) in many Pacific Northwest river basins in the early fall. Two primary causes are identified: 1) more extreme and earlier storms and 2) warming temperatures that shift precipitation from snow to rain dominance over regional terrain. The simulations also show a wide range of uncertainty among different basins stemming from localized storm characteristics. While previous research using statistical downscaling suggests that many areas in the Pacific Northwest are likely to experience substantial increases in flooding in response to global climate change, these initial estimates do not adequately represent the effects of changes in heavy precipitation. Unlike statistical downscaling techniques applied to global climate model scenarios, the regional model provides an explicit, physically based simulation of the seasonality, size, location, and intensity of historical and future extreme storms, including atmospheric rivers. This paper presents climate projections from the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) global climate model dynamically downscaled using the Weather Research and Forecasting (WRF) Model implemented at 12-km resolution for the period 1970–2069. The resulting daily precipitation and temperature data are bias corrected and used as input to a physically based Variable Infiltration Capacity (VIC) hydrologic model. From the daily time step simulations of streamflow produced by the hydrologic model, probability distributions are fit to the extreme events extracted from each water year and flood statistics for various return intervals are estimated.


Sign in / Sign up

Export Citation Format

Share Document