Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model

2006 ◽  
Vol 7 (5) ◽  
pp. 1113-1125 ◽  
Author(s):  
Eleanor J. Burke ◽  
Simon J. Brown ◽  
Nikolaos Christidis

Abstract Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI) since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, present-day drought events are defined as continuous time periods where the PDSI is less than the 20th percentile of the PDSI distribution between 1952 and 1998 (i.e., on average 20% of the land surface is in drought at any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios (SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1% for the present day to 30% by the end of the twenty-first century.

2013 ◽  
Vol 26 (23) ◽  
pp. 9399-9407 ◽  
Author(s):  
Simon Borlace ◽  
Wenju Cai ◽  
Agus Santoso

The amplitude of the El Niño–Southern Oscillation (ENSO) can vary naturally over multidecadal time scales and can be influenced by climate change. However, determining the mechanism for this variation is difficult because of the paucity of observations over such long time scales. Using a 1000-yr integration of a coupled global climate model and a linear stability analysis, it is demonstrated that multidecadal modulation of ENSO amplitude can be driven by variations in the governing dynamics. In this model, the modulation is controlled by the underlying thermocline feedback mechanism, which in turn is governed by the response of the oceanic thermocline slope across the equatorial Pacific to changes in the overlying basinwide zonal winds. Furthermore, the episodic strengthening and weakening of this coupled interaction is shown to be linked to the slowly varying background climate. In comparison with the model statistics, the recent change of ENSO amplitude in observations appears to be still within the range of natural variability. This is despite the apparent warming trend in the mean climate. Hence, this study suggests that it may be difficult to infer a climate change signal from changes in ENSO amplitude alone, particularly given the presently limited observational data.


2012 ◽  
Vol 26 (21) ◽  
pp. 8269-8288 ◽  
Author(s):  
Alvaro Semedo ◽  
Ralf Weisse ◽  
Arno Behrens ◽  
Andreas Sterl ◽  
Lennart Bengtsson ◽  
...  

Abstract Wind-generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air–sea interface. So far, long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model [Wave Ocean Model (WAM)] is driven by atmospheric forcing from a global climate model (ECHAM5) for present-day and potential future climate conditions represented by the Intergovernmental Panel for Climate Change (IPCC) A1B emission scenario. It is found that changes in mean and extreme wave climate toward the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the midlatitudes of both hemispheres, more pronounced in the Southern Hemisphere and most likely associated with a corresponding shift in midlatitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the middle to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward toward a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.


2018 ◽  
Vol 31 (20) ◽  
pp. 8281-8303 ◽  
Author(s):  
Kieran Bhatia ◽  
Gabriel Vecchi ◽  
Hiroyuki Murakami ◽  
Seth Underwood ◽  
James Kossin

As one of the first global coupled climate models to simulate and predict category 4 and 5 (Saffir–Simpson scale) tropical cyclones (TCs) and their interannual variations, the High-Resolution Forecast-Oriented Low Ocean Resolution (HiFLOR) model at the Geophysical Fluid Dynamics Laboratory (GFDL) represents a novel source of insight on how the entire TC intensification distribution could be transformed because of climate change. In this study, three 70-yr HiFLOR experiments are performed to identify the effects of climate change on TC intensity and intensification. For each of the experiments, sea surface temperature (SST) is nudged to different climatological targets and atmospheric radiative forcing is specified, allowing us to explore the sensitivity of TCs to these conditions. First, a control experiment, which uses prescribed climatological ocean and radiative forcing based on observations during the years 1986–2005, is compared to two observational records and evaluated for its ability to capture the mean TC behavior during these years. The simulated intensification distributions as well as the percentage of TCs that become major hurricanes show similarities with observations. The control experiment is then compared to two twenty-first-century experiments, in which the climatological SSTs from the control experiment are perturbed by multimodel projected SST anomalies and atmospheric radiative forcing from either 2016–35 or 2081–2100 (RCP4.5 scenario). The frequency, intensity, and intensification distribution of TCs all shift to higher values as the twenty-first century progresses. HiFLOR’s unique response to climate change and fidelity in simulating the present climate lays the groundwork for future studies involving models of this type.


2011 ◽  
Vol 24 (4) ◽  
pp. 1264-1275 ◽  
Author(s):  
Sang-Ki Lee ◽  
David B. Enfield ◽  
Chunzai Wang

Abstract Global climate model simulations forced by future greenhouse warming project that the tropical North Atlantic (TNA) warms at a slower rate than the tropical Indo-Pacific in the twenty-first century, consistent with their projections of a weakened Atlantic thermohaline circulation. Here, an atmospheric general circulation model is used to advance a consistent physical rationale that the suppressed warming of the TNA increases the vertical wind shear and static stability aloft in the main development region (MDR) for Atlantic hurricanes, and thus decreases overall Atlantic hurricane activity in the twenty-first century. A carefully designed suite of model experiments illustrates that the preferential warming of the tropical Indo-Pacific induces a global average warming of the tropical troposphere, via a tropical teleconnection mechanism, and thus increases atmospheric static stability and decreases convection over the suppressed warming region of the TNA. The anomalous diabatic cooling, in turn, forces the formation of a stationary baroclinic Rossby wave northwest of the forcing region, consistent with Gill’s simple model of tropical atmospheric circulations, in such a way as to induce a secular increase of the MDR vertical wind shear. However, a further analysis indicates that the net effect of future greenhouse warming on the MDR vertical wind shear is less than the observed multidecadal swing of the MDR vertical wind shear in the twentieth century. Thus, it is likely that the Atlantic multidecadal oscillation will still play a decisive role over the greenhouse warming in the fate of Atlantic hurricane activity throughout the twenty-first century under the assumption that the twenty-first-century changes in interbasin SST difference, projected by the global climate model simulations, are accurate.


2017 ◽  
Vol 21 (1) ◽  
pp. 409-422 ◽  
Author(s):  
Jason P. Evans ◽  
Xianhong Meng ◽  
Matthew F. McCabe

Abstract. In this study, we have examined the ability of a regional climate model (RCM) to simulate the extended drought that occurred throughout the period of 2002 through 2007 in south-east Australia. In particular, the ability to reproduce the two drought peaks in 2002 and 2006 was investigated. Overall, the RCM was found to reproduce both the temporal and the spatial structure of the drought-related precipitation anomalies quite well, despite using climatological seasonal surface characteristics such as vegetation fraction and albedo. This result concurs with previous studies that found that about two-thirds of the precipitation decline can be attributed to the El Niño–Southern Oscillation (ENSO). Simulation experiments that allowed the vegetation fraction and albedo to vary as observed illustrated that the intensity of the drought was underestimated by about 10 % when using climatological surface characteristics. These results suggest that in terms of drought development, capturing the feedbacks related to vegetation and albedo changes may be as important as capturing the soil moisture–precipitation feedback. In order to improve our modelling of multi-year droughts, the challenge is to capture all these related surface changes simultaneously, and provide a comprehensive description of land surface–precipitation feedback during the droughts development.


2021 ◽  
pp. 1-48
Author(s):  
Renzhi Jing ◽  
Ning Lin ◽  
Kerry Emanuel ◽  
Gabriel Vecchi ◽  
Thomas R. Knutson

AbstractIn this study, we investigate the response of tropical cyclones (TCs) to climate change by using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a statistical-deterministic method to downscale TCs using environmental conditions obtained from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low Ocean Resolution (HiFLOR) model, under the Representative Concentration Pathway 4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly simulated in HiFLOR. We show that while significantly more storms are detected in HiFLOR towards the end of the twenty-first century, the statistical-deterministic model projects a moderate increase in TC frequency, and PepC projects almost no increase in TC frequency. The changes in storm frequency in all three datasets are not significant in the mid-twenty-first century. All three project that storms will become more intense and the fraction of major hurricanes and Category 5 storms will significantly increase in the future climates. However, HiFLOR projects the largest increase in intensity while PepC projects the least. The results indicate that HiFLOR’s TC projection is more sensitive to climate change effects and statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification and frequency increase lead to relatively small changes in TC threat as measured by the return level of landfall intensity.


2021 ◽  
pp. 1-48
Author(s):  
Daniel F. Schmidt ◽  
Kevin M. Grise

AbstractClimate change during the twenty-first century has the potential to substantially alter geographic patterns of precipitation. However, regional precipitation changes can be very difficult to project, and in some regions, global climate models do not even agree on the sign of the precipitation trend. Since some of this uncertainty is due to internal variability rather than model bias, models cannot be used to narrow the possibilities to a single outcome, but they can usefully quantify the range of plausible outcomes and identify the combination of dynamical drivers that would be likely to produce each.This study uses a storylines approach—a type of regression-based analysis—to identify some of the key dynamical drivers that explain the variance in 21st century U.S. winter precipitation trends across CMIP6 models under the SSP3-7.0 emissions scenario. This analysis shows that the spread in precipitation trends is not primarily driven by differences in modeled climate sensitivity. Key drivers include global-mean surface temperature, but also tropical upper-troposphere temperature, the El Niño-Southern Oscillation (ENSO), the Pacific-North America (PNA) pattern, and the East Pacific (EP) dipole (a dipole pattern in geopotential heights over North America’s Pacific coast). Combinations of these drivers can reinforce or cancel to produce various high- or low-impact scenarios for winter precipitation trends in various regions of the United States. For example, the most extreme winter precipitation trends in the southwestern U.S. result from opposite trends in ENSO and EP, whereas the wettest winter precipitation trends in the midwestern U.S. result from a combination of strong global warming and a negative PNA trend.


2020 ◽  
Vol 33 (9) ◽  
pp. 3431-3447
Author(s):  
Tobias Spiegl ◽  
Ulrike Langematz

AbstractSatellite measurements over the last three decades show a gradual decrease in solar output, which can be indicative as a precursor to a modern grand solar minimum (GSM). Using a chemistry–climate model, this study investigates the potential of two GSM scenarios with different magnitude to counteract the climate change by projected anthropogenic greenhouse gas (GHG) emissions through the twenty-first century. To identify regions showing enhanced vulnerability to climate change (hot spots) and to estimate their response to a possible modern GSM, a multidimensional metric is applied that accounts for—in addition to changes in mean quantities—seasonal changes in the variability and occurrence of extreme events. We find that a future GSM in the middle of the twenty-first century would temporarily mitigate the global mean impact of anthropogenic climate change by 10%–23% depending on the GSM scenario. A future GSM would, however, not be able to stop anthropogenic global warming. For the GHG-only scenario, our hot-spot analysis suggests that the midlatitudes show a response to rising GHGs below global average, while in the tropics, climate change hot spots with more frequent extreme hot seasons will develop during the twenty-first century. A GSM would reduce the climate change warming in all regions. The GHG-induced warming in Arctic winter would be dampened in a GSM due to the impact of reduced solar irradiance on Arctic sea ice. However, even an extreme GSM could only mitigate a fraction of the tropical hot-spot pattern (up to 24%) in the long term.


2019 ◽  
Vol 15 (5) ◽  
pp. 1691-1713 ◽  
Author(s):  
Stephen J. Hunter ◽  
Alan M. Haywood ◽  
Aisling M. Dolan ◽  
Julia C. Tindall

Abstract. We present the UK's input into the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) using the Hadley Centre Climate Model version 3 (HadCM3). The 400 ppm CO2 Pliocene experiment has a mean annual surface air temperature that is 2.9 ∘C warmer than the pre-industrial and a polar amplification of between 1.7 and 2.2 times the global mean warming. The Pliocene Research Interpretation and Synoptic Mapping (PRISM4) enhanced Pliocene palaeogeography accounts for a warming of 1.4 ∘C, whilst the CO2 increase from 280 to 400 ppm leads to a further 1.5 ∘C of warming. Climate sensitivity is 3.5 ∘C for the pre-industrial and 2.9 ∘C for the Pliocene. Precipitation change between the pre-industrial and Pliocene is complex, with geographic and land surface changes primarily modifying the geographical extent of mean annual precipitation. Sea ice fraction and areal extent are reduced during the Pliocene, particularly in the Southern Hemisphere, although they persist through summer in both hemispheres. The Pliocene palaeogeography drives a more intense Pacific and Atlantic meridional overturning circulation (AMOC). This intensification of AMOC is coincident with more widespread deep convection in the North Atlantic. We conclude by examining additional sensitivity experiments and confirm that the choice of total solar insolation (1361 vs. 1365 Wm−2) and orbital configuration (modern vs. 3.205 Ma) does not significantly influence the anomaly-type analysis in use by the Pliocene community.


Sign in / Sign up

Export Citation Format

Share Document