scholarly journals The Representation of Ocean Circulation and Variability in Thermodynamic Coordinates

2014 ◽  
Vol 44 (7) ◽  
pp. 1735-1750 ◽  
Author(s):  
Sjoerd Groeskamp ◽  
Jan D. Zika ◽  
Trevor J. McDougall ◽  
Bernadette M. Sloyan ◽  
Frédéric Laliberté

Abstract The ocean’s circulation is analyzed in Absolute Salinity SA and Conservative Temperature Θ coordinates. It is separated into 1) an advective component related to geographical displacements in the direction normal to SA and Θ isosurfaces and 2) into a local component, related to local changes in SA–Θ values, without a geographical displacement. In this decomposition, the sum of the advective and local components of the circulation is equivalent to the material derivative of SA and Θ. The sum is directly related to sources and sinks of salt and heat. The advective component is represented by the advective thermohaline streamfunction . After removing a trend, the local component can be represented by the local thermohaline streamfunction . Here, can be diagnosed using a monthly averaged time series of SA and Θ from an observational dataset. In addition, and are determined from a coupled climate model. The diathermohaline streamfunction is the sum of and and represents the nondivergent diathermohaline circulation in SA–Θ coordinates. The diathermohaline trend, resulting from the trend in the local changes of SA and Θ, quantifies the redistribution of the ocean’s volume in SA–Θ coordinates over time. It is argued that the diathermohaline streamfunction provides a powerful tool for the analysis of and comparison among ocean models and observation-based gridded climatologies.

2018 ◽  
Vol 15 (17) ◽  
pp. 5343-5363 ◽  
Author(s):  
Alessandra D'Angelo ◽  
Federico Giglio ◽  
Stefano Miserocchi ◽  
Anna Sanchez-Vidal ◽  
Stefano Aliani ◽  
...  

Abstract. High-latitude regions are warming faster than other areas due to reduction of snow cover and sea ice loss and changes in atmospheric and ocean circulation. The combination of these processes, collectively known as polar amplification, provides an extraordinary opportunity to document the ongoing thermal destabilisation of the terrestrial cryosphere and the release of land-derived material into the aquatic environment. This study presents a 6-year time series (2010–2016) of physical parameters and particle fluxes collected by an oceanographic mooring in Kongsfjorden (Spitsbergen, Svalbard). In recent decades, Kongsfjorden has been experiencing rapid loss of sea ice coverage and retreat of local glaciers as a result of the progressive increase in ocean and air temperatures. The overarching goal of this study was to continuously monitor the inner fjord particle sinking and to understand to what extent the temporal evolution of particulate fluxes was linked to the progressive changes in both Atlantic and freshwater input. Our data show high peaks of settling particles during warm seasons, in terms of both organic and inorganic matter. The different sources of suspended particles were described as a mixing of glacier carbonate, glacier siliciclastic and autochthonous marine input. The glacier releasing sediments into the fjord was the predominant source, while the sediment input by rivers was reduced at the mooring site. Our time series showed that the seasonal sunlight exerted first-order control on the particulate fluxes in the inner fjord. The marine fraction peaked when the solar radiation was at a maximum in May–June while the land-derived fluxes exhibited a 1–2-month lag consistent with the maximum air temperature and glacier melting. The inter-annual time-weighted total mass fluxes varied by 2 orders of magnitude over time, with relatively higher values in 2011, 2013, and 2015. Our results suggest that the land-derived input will remarkably increase over time in a warming scenario. Further studies are therefore needed to understand the future response of the Kongsfjorden ecosystem alterations with respect to the enhanced release of glacier-derived material.


2018 ◽  
Vol 31 (7) ◽  
pp. 2613-2632 ◽  
Author(s):  
Ariaan Purich ◽  
Matthew H. England ◽  
Wenju Cai ◽  
Arnold Sullivan ◽  
Paul J. Durack

The Southern Ocean surface has freshened in recent decades, increasing water column stability and reducing upwelling of warmer subsurface waters. The majority of CMIP5 models underestimate or fail to capture this historical surface freshening, yet little is known about the impact of this model bias on regional ocean circulation and hydrography. Here experiments are performed using a global coupled climate model with additional freshwater applied to the Southern Ocean to assess the influence of recent surface freshening. The simulations explore the impact of persistent and long-term broad-scale freshening as a result of processes including precipitation minus evaporation changes. Thus, unlike previous studies, the freshening is applied as far north as 55°S, beyond the Antarctic ice margin. It is found that imposing a large-scale surface freshening causes a surface cooling and sea ice increase under preindustrial conditions, because of a reduction in ocean convection and weakened entrainment of warm subsurface waters into the surface ocean. This is consistent with intermodel relationships between CMIP5 models and the simulations, suggesting that models with larger surface freshening also exhibit stronger surface cooling and increased sea ice. Additional experiments are conducted with surface salinity restoration applied to capture observed regional salinity trends. Remarkably, without any mechanical wind trend forcing, these simulations accurately represent the spatial pattern of observed surface temperature and sea ice trends around Antarctica. This study highlights the importance of accurately simulating changes in Southern Ocean salinity to capture changes in ocean circulation, sea surface temperature, and sea ice.


2018 ◽  
Author(s):  
Alessandra D'Angelo ◽  
Federico Giglio ◽  
Stefano Miserocchi ◽  
Anna Sanchez-Vidal ◽  
Stefano Aliani ◽  
...  

Abstract. High latitude regions are warming faster than other areas due to reduction of snow cover, sea ice loss, changes in atmospheric and ocean circulation. The combination of these processes, collectively known as polar amplification, provides an extraordinary opportunity to document the ongoing thermal destabilisation of the terrestrial cryosphere and the release of land-derived material into the aquatic environment. This study presents a six-year time-series (2010–2016) of physical parameters and particles fluxes collected by an oceanographic mooring in Kongsfjorden (Spitsbergen, Svalbard). In recent decades, Kongsfjorden has been experiencing rapid loss of sea ice coverage and retreat of local glaciers as a result of the progressive increase of ocean and air temperatures. The overarching goal of this study was to continuous monitoring the inner fjord particle sinking and to understand to what extent the temporal evolution of particulate fluxes were linked to the progressive changes in both Atlantic and freshwater input. Our data show high peaks of settling particles during warm seasons, in terms of both organic and inorganic matter. The different sources of suspended particles were described as a mixing of glacier carbonate, glacier-silicoclastic and autochthonous marine input. The glacier releasing sediments into the fjord resulted to be the predominant source, while the sediment input by rivers was reduced at the mooring site. Our time-series showed that the seasonal sunlight exerted first-order control on the particulate fluxes in the inner fjord. The marine fraction peaked when the solar radiation was maxima in May–June while the land-derived fluxes exhibited a 1–2 months lag consistent with the maximum air temperature and glacier melting. The inter-annual time-weighted total mass fluxes varied two-order of magnitudes over time, with relatively higher values in 2011, 2013 and 2015. Our results suggest that the land-derived input will remarkably increase over time in a warming scenario. Further studies are therefore needed to understand the future response of the Kongsfjorden ecosystem alterations in respect to the enhanced release of glacier-derived material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ariaan Purich ◽  
Ghyslaine Boschat ◽  
Giovanni Liguori

AbstractThe Southern Ocean exerts a strong influence on global climate, regulating the storage and transport of heat, freshwater and carbon throughout the world’s oceans. While the majority of previous studies focus on how wind changes influence Southern Ocean circulation patterns, here we set out to explore potential feedbacks from the ocean to the atmosphere. To isolate the role of oceanic variability on Southern Hemisphere climate, we perform coupled climate model experiments in which Southern Ocean variability is suppressed by restoring sea surface temperatures (SST) over 40°–65°S to the model’s monthly mean climatology. We find that suppressing Southern Ocean SST variability does not impact the Southern Annular Mode, suggesting air–sea feedbacks do not play an important role in the persistence of the Southern Annular Mode in our model. Suppressing Southern Ocean SST variability does lead to robust mean-state changes in SST and sea ice. Changes in mixed layer processes and convection associated with the SST restoring lead to SST warming and a sea ice decline in southern high latitudes, and SST cooling in midlatitudes. These results highlight the impact non-linear processes can have on a model’s mean state, and the need to consider these when performing simulations of the Southern Ocean.


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 843-855 ◽  
Author(s):  
John M Kalish ◽  
Reidar Nydal ◽  
Kjell H Nedreaas ◽  
George S Burr ◽  
Gro L Eine

Radiocarbon measured in seawater dissolved inorganic carbon (DIC) can be used to investigate ocean circulation, atmosphere/ocean carbon flux, and provide powerful constraints for the fine-tuning of general circulation models (GCMs). Time series of 14C in seawater are derived most frequently from annual bands of hermatypic corals. However, this proxy is unavailable in temperate and polar oceans. Fish otoliths, calcium carbonate auditory, and gravity receptors in the membranous labyrinths of teleost fishes, can act as proxies for 14C in most oceans and at most depths. Arcto-Norwegian cod otoliths are suited to this application due to the well-defined distribution of this species in the Barents Sea, the ability to determine ages of individual Arcto-Norwegian cod with a high level of accuracy, and the availability of archived otoliths collected for fisheries research over the past 60 years. Using measurements of 14C derived from Arcto-Norwegian cod otoliths, we present the first pre- and post-bomb time series (1919–1992) of 14C from polar seas and consider the significance of these data in relation to ocean circulation and atmosphere/ocean flux of 14C. The data provide evidence for a minor Suess effect of only 0.2‰ per year between 1919 and 1950. Bomb 14C was evident in the Barents Sea as early as 1957 and the highest 14C value was measured in an otolith core from a cod with a birth date of 1967. The otolith 14C data display key features common to records of 14C obtained from a Georges Bank mollusc and corals from the tropical and subtropical North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document