scholarly journals On the Variability of Antarctic Circumpolar Current Fronts Inferred from 1992–2011 Altimetry*

2014 ◽  
Vol 44 (12) ◽  
pp. 3054-3071 ◽  
Author(s):  
Yong Sun Kim ◽  
Alejandro H. Orsi

Abstract Antarctic Circumpolar Current (ACC) fronts, defined as water mass boundaries, have been known to respond to large-scale atmospheric variabilities, especially the Southern Hemisphere annular mode (SAM) and El Niño–Southern Oscillation (ENSO). Distinct patterns of localized variability in meridional front displacements during 1992–2011 are derived from the analysis of satellite sea surface height data. Major basin-scale differences are found between the southeast Pacific (150°–90°W) and the southeast Indian (75°–150°E) sectors of the ACC. Frontal positions in the southeast Pacific show large year-to-year meridional fluctuations, attributed mostly to ENSO and in part SAM, and no apparent seasonal cycles or long-term trends. In contrast, summer (winter) frontal locations in the southeast Indian extend farther to the south (north) of their long-term mean distribution. A southward drift of ACC fronts is indicated over the Indian sector during the past two decades. This long-term shift is not directly related to the atmospheric variabilities, but this is most likely in response to changes in large-scale ocean circulation, in particular to the poleward expansion of the Indian subtropical gyre. The existence of these localized, contrasting variability patterns suggests that a circumpolar-averaging analysis could possibly smooth out a local climate signal, with an emphasis on a basin-scale investigation for climate studies in the Southern Ocean.

Author(s):  
Sarah T. Gille

Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation.


2019 ◽  
Vol 11 (18) ◽  
pp. 4853
Author(s):  
You-Lin Wang ◽  
Yu-Chen Hsu ◽  
Chung-Pan Lee ◽  
Chau-Ron Wu

The Antarctic Circumpolar Current (ACC) plays an important role in the climate as it balances heat energy and water mass between the Pacific and Atlantic Oceans through the Drake Passage. However, because the historical measurements and observations are extremely limited, the decadal and long-term variations of the ACC around the western South Atlantic Ocean are rarely studied. By analyzing reconstructed sea surface temperatures (SSTs) in a 147-year period (1870–2016), previous studies have shown that SST anomalies (SSTAs) around the Antarctic Peninsula and South America had the same phase change as the El Niño Southern Oscillation (ENSO). This study further showed that changes in SSTAs in the regions mentioned above were enlarged when the Pacific Decadal Oscillation (PDO) and the ENSO were in the same warm or cold phase, implying that changes in the SST of higher latitude oceans could be enhanced when the influence of the ENSO is considered along with the PDO.


2022 ◽  
Author(s):  
K. Marynets

Abstract. This paper proposes a modelling of the Antarctic Circumpolar Current (ACC) by means of a two-point boundary value problem. As the major means of exchange of water between the great ocean basins (Atlantic, Pacific and Indian), the ACC plays a highly important role in the global climate. Despite its importance, it remains one of the most poorly understood components of global ocean circulation. We present some recent results on the existence and uniqueness of solutions of a two-point nonlinear boundary value problem that arises in the modeling of the flow of the (ACC) (see discussions in [4-9]).


2015 ◽  
Vol 45 (4) ◽  
pp. 1051-1067 ◽  
Author(s):  
Clothilde E. Langlais ◽  
Stephen R. Rintoul ◽  
Jan D. Zika

AbstractThe Southern Hemisphere westerly winds have intensified in recent decades associated with a positive trend in the southern annular mode (SAM). However, the response of the Antarctic Circumpolar Current (ACC) transport and eddy field to wind forcing remains a topic of debate. This study uses global eddy-permitting ocean circulation models driven with both idealized and realistic wind forcing to explore the response to interannual wind strengthening. The response of the barotropic and baroclinic transports and eddy field of the ACC is found to depend on the spatial pattern of the changes in wind forcing. In isolation, an enhancement of the westerlies over the ACC belt leads to an increase of both barotropic and baroclinic transport within the ACC envelope, with lagged enhancement of the eddy kinetic energy (EKE). In contrast, an increase in wind forcing near Antarctica drives a largely barotropic change in transport along closed f/H contours (“free mode”), with little change in eddy activity. Under realistic forcing, the interplay of the SAM and the El Niño–Southern Oscillation (ENSO) influences the spatial distribution of the wind anomalies, in particular the partition between changes in the wind stress over the ACC and along f/H contours. This study finds that the occurrence of a negative or positive ENSO during a positive SAM can cancel or double the wind anomalies near Antarctica, altering the response of the ACC and its eddy field. While a negative ENSO and positive SAM favors an increase in EKE, a positive ENSO and positive SAM lead to barotropic transport changes and no eddy response.


2016 ◽  
Vol 46 (11) ◽  
pp. 3385-3396 ◽  
Author(s):  
Jinbo Wang ◽  
Matthew R. Mazloff ◽  
Sarah T. Gille

AbstractThe Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niloufar Nouri ◽  
Naresh Devineni ◽  
Valerie Were ◽  
Reza Khanbilvardi

AbstractThe annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefficients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The influence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.


2013 ◽  
Vol 33 ◽  
pp. 3-12 ◽  
Author(s):  
C. Collins ◽  
A. Mascarenhas ◽  
R. Martinez

Abstract. From 27 March to 5 April 2009, upper ocean velocities between the Galápagos Islands and Ecuador were measured using a vessel mounted ADCP. A region of possible strong cross-hemisphere exchange was observed immediately to the east of the Galápagos, where a shallow (200 m) 300 km wide northeastward surface flow transported 7–11 Sv. Underlying this strong northeastward surface current, a southward flowing undercurrent was observed which was at least 600 m thick, 100 km wide, and had an observed transport of 7–8 Sv. Next to the Ecuador coast, the shallow (< 200 m) Ecuador Coastal Current was observed to extend offshore 100 km with strongest flow, 0.33 m s−1, near the surface. Immediately to the west of the Ecuador Coastal Current, flow was directed eastward and southward into the beginnings of the Peru-Chile Countercurrent. The integral of the surface currents between the Galápagos and Ecuador agreed well with observed sea level differences. Although the correlation of the sea level differences with large scale climate indices (Niño3 and the Southern Oscillation Index) was significant, more than half of the sea level variability was not explained. Seasonal variability of the sea level difference indicated that sea level was 2 cm higher at the Galápagos during late winter and early spring, which could be associated with the pattern of northward surface flows observed by R/V Knorr.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


Sign in / Sign up

Export Citation Format

Share Document