scholarly journals Influence of the Barotropic Mean Flow on the Width and the Structure of the Atlantic Equatorial Deep Jets

2014 ◽  
Vol 44 (9) ◽  
pp. 2485-2497 ◽  
Author(s):  
Martin Claus ◽  
Richard J. Greatbatch ◽  
Peter Brandt

Abstract A representation of an equatorial basin mode excited in a shallow-water model for a single high-order baroclinic vertical normal mode is used as a simple model for the equatorial deep jets. The model is linearized about both a state of rest and a barotropic mean flow corresponding to the observed Atlantic Equatorial Intermediate Current System. It was found that the eastward mean flow associated with the North and South Intermediate Counter Currents (NICC and SICC, respectively) effectively shields the equator from off-equatorial Rossby waves. The westward propagation of these waves is blocked, and focusing on the equator due to beta dispersion is prevented. This leads to less energetic jets along the equator. On the other hand, the westward barotropic mean flow along the equator reduces the gradient of absolute vorticity and hence widens the cross-equatorial structure of the basin mode. Increasing lateral viscosity predominantly affects the width of the basin modes’ Kelvin wave component in the presence of the mean flow, while the Rossby wave is confined by the flanking NICC and SICC. Independent of the presence of the mean flow, the application of sufficient lateral mixing also hinders the focusing of off-equatorial Rossby waves, which is hence an unlikely feature of a low-frequency basin mode in the real ocean.

Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1667-1690 ◽  
Author(s):  
Jérôme Sirven ◽  
Juliette Mignot ◽  
Michel Crépon

Abstract. In December 2002 and January 2003 satellite observations of chlorophyll showed a strong coastal signal along the west African coast between 10 and 22∘ N. In addition, a wavelike pattern with a wavelength of about 750 km was observed from 20 December 2002 and was detectable for 1 month in the open sea, south-west of the Cape Verde Peninsula. Such a pattern suggests the existence of a locally generated Rossby wave which slowly propagated westward during this period. This hypothesis was confirmed by analysing sea surface height provided by satellite altimeter during this period. To decipher the mechanisms at play, a numerical study based on a reduced-gravity shallow-water model has first been conducted. A wind burst, broadly extending over the region where the offshore oceanic signal is observed, is applied for 5 d. A Kelvin wave quickly develops along the northern edge of the cape, then propagates and leaves the area in a few days. Simultaneously, a Rossby wave whose characteristics seem similar to the observed pattern forms and slowly propagates westward. The existence of the peninsula limits the extent of the wave to the north. The spatial extent of the wind burst determines the extent of the response and correspondingly the timescale of the phenomenon (about 100 d in the present case). When the wind burst has a large zonal and small meridional extent, the behaviour of a wave to the north of the peninsula differs from that to the south. These results are corroborated and completed by an analytical study of a linear reduced-gravity model using a non-Cartesian coordinate system. This system is introduced to evaluate the potential impact of the coastline shape. The analytical computations confirm that a period of around 100 d can be associated with the observed wave considering the value of the wavelength; they also show that the role of the coastline remains moderate at such timescales. By contrast, when the period becomes shorter (smaller than 20–30 d), the behaviour of the waves is modified because of the shape of the coast. South of the peninsula, a narrow band of sea isolated from the rest of the ocean by two critical lines appears. Its meridional extent is about 100 km and Rossby waves could propagate there towards the coast.


2019 ◽  
Author(s):  
Jérôme Sirven ◽  
Juliette Mignot ◽  
Michel Crépon

Abstract. In December 2002 and January 2003 satellite observations of Chlorophyll showed a strong coastal signal along the west african coast between 10° and 22° N. In addition, a wavelike pattern with a wavelength of about 750 kms was observed from December 20th 2002 and was detectable for one month in the open sea, south west to the Cape Verde peninsula. Such a pattern suggests the existence of a locally generated Rossby wave which slowly propagated westward during this period. To verify this hypothesis a numerical study based on a reduced gravity shallow water model has been conducted. A wind burst, broadly extending over the region where the offshore oceanic signal is observed, is applied during 5 days. A Kelvin wave quickly develops along the northern edge of the cape, then propagates and leaves the area in a few days. Simultaneoulsly, a Rossby wave whose characterisics seem similar to the observed pattern forms and slowly propagates westward. The existence of the peninsula limits the extent of the wave to the north. The spatial extent of the wind burst determines the extent of the response and correspondingly the time scale of the phenomenon (about 100 days in the present case). When the wind burst has a large zonal and small meridional extent, the behaviour of a wave to the north of the peninsula differs from that to the south. These results are corroborated and completed by an analytical study of a linear reduced gravity model using a non-Cartesian coordinate system. This system is introduced to evaluate the potential impact of the coastline shape. The analytical computations confirm that, considering the value of the wavelength, a time scale around 100 days can be associated with the observed wave. They also show that the role of the coastline remains moderate at such time scales. On the contrary, when the period becomes shorter (smaller than 20–30 days), the behaviour of the waves is modified because of the shape of the coast. South of the peninsula, a narrow band of sea isolated from the rest of the ocean by two critical lines appears. Its meridional extent is about 100 km and Rossby waves could propagate there towards the coast.


2007 ◽  
Vol 24 (6) ◽  
pp. 1033-1049 ◽  
Author(s):  
Yury Vikhliaev ◽  
Paul Schopf ◽  
Tim DelSole ◽  
Ben Kirtman

A method for finding the most unstable eigenmodes in linear models using the breeding technique was developed. The breeding technique was extended to allow for the calculation of complex eigenvalues and eigenvectors of the linear model operator without involving computationally expensive matrix manipulations. While the breeding method finds the most unstable modes, multiple planetary basin modes may be found by removing the leading modes using the adjoint model. To test the sensitivity of basin modes to model formulation, the method was applied for the calculation of the gravest planetary basin modes in a reduced-gravity linear shallow water model with complex basin geometry and background circulation. It was found that the leading basin modes are not sensitive to the form of the dissipation or model resolution, suggesting that the decadal modes are robust. However, the properties of the low-frequency modes are strongly affected by the basin geometry and the mean flow.


2016 ◽  
Vol 73 (8) ◽  
pp. 3181-3196 ◽  
Author(s):  
João Rafael Dias Pinto ◽  
Jonathan Lloyd Mitchell

Abstract The interplay between mean meridional circulation and transient eddies through wave–mean flow interaction processes defines the general behavior of any planetary atmospheric circulation. Under a higher-Rossby-number regime, equatorward momentum transports provided by large-scale disturbances generate a strong zonal flow at the equatorial region. At intermediate Rossby numbers, equatorial Kelvin waves play a leading role in maintaining a superrotating jet over the equator. However, at high Rossby numbers, the Kelvin wave only provides equatorward momentum fluxes during spinup, and the wave–mean flow process that maintains this strongly superrotating state has yet to be identified. This study presents a comprehensive analysis of the tridimensional structure and life cycle of atmospheric waves and their interaction with the mean flow, which maintains the strong, long-lived superrotating state in a higher-Rossby-number-regime atmosphere. The results show that the mean zonal superrotating circulation is maintained by the dynamical interaction between mixed baroclinic–barotropic Rossby wave modes via low-frequency variations of the zonal-mean state in short and sporadic periods of stronger instability. The modulation of amplitude of the equatorial and extratropical Rossby waves suggests a nonlinear mechanism of eddy–eddy interaction between these modes.


2012 ◽  
Vol 695 ◽  
pp. 199-234 ◽  
Author(s):  
M. E. Goldstein ◽  
Adrian Sescu ◽  
M. Z. Afsar

AbstractIt is now well-known that there is an exact formula relating the far-field jet noise spectrum to the convolution product of a propagator (that accounts for the mean flow interactions) and a generalized Reynolds stress autocovariance tensor (that accounts for the turbulence fluctuations). The propagator depends only on the mean flow and an adjoint vector Green’s function for a particular form of the linearized Euler equations. Recent numerical calculations of Karabasov, Bogey & Hynes (AIAA Paper 2011-2929) for a Mach 0.9 jet show use of the true non-parallel flow Green’s function rather than the more conventional locally parallel flow result leads to a significant increase in the predicted low-frequency sound radiation at observation angles close to the downstream jet axis. But the non-parallel flow appears to have little effect on the sound radiated at $9{0}^{\ensuremath{\circ} } $ to the downstream axis. The present paper is concerned with the effects of non-parallel mean flows on the adjoint vector Green’s function. We obtain a low-frequency asymptotic solution for that function by solving a very simple second-order hyperbolic equation for a composite dependent variable (which is directly proportional to a pressure-like component of this Green’s function and roughly corresponds to the strength of a monopole source within the jet). Our numerical calculations show that this quantity remains fairly close to the corresponding parallel flow result at low Mach numbers and that, as expected, it converges to that result when an appropriately scaled frequency parameter is increased. But the convergence occurs at progressively higher frequencies as the Mach number increases and the supersonic solution never actually converges to the parallel flow result in the vicinity of a critical- layer singularity that occurs in that solution. The dominant contribution to the propagator comes from the radial derivative of a certain component of the adjoint vector Green’s function. The non-parallel flow has a large effect on this quantity, causing it (and, therefore, the radiated sound) to increase at subsonic speeds and decrease at supersonic speeds. The effects of acoustic source location can be visualized by plotting the magnitude of this quantity, as function of position. These ‘altitude plots’ (which represent the intensity of the radiated sound as a function of source location) show that while the parallel flow solutions exhibit a single peak at subsonic speeds (when the source point is centred on the initial shear layer), the non-parallel solutions exhibit a double peak structure, with the second peak occurring about two potential core lengths downstream of the nozzle. These results are qualitatively consistent with the numerical calculations reported in Karabasov et al. (2011).


2015 ◽  
Vol 28 (23) ◽  
pp. 9332-9349 ◽  
Author(s):  
Liang Wu ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract Part I of this study examined the modulation of the monsoon trough (MT) on tropical depression (TD)-type–mixed Rossby–gravity (MRG) and equatorial Rossby (ER) waves over the western North Pacific based on observations. This part investigates the interaction of these waves with the MT through a diagnostics of energy conversion that separates the effect of the MT on TD–MRG and ER waves. It is found that the barotropic conversion associated with the MT is the most important mechanism for the growth of eddy energy in both TD–MRG and ER waves. The large rotational flows help to maintain the rapid growth and tilted horizontal structure of the lower-tropospheric waves through a positive feedback between the wave growth and horizontal structure. The baroclinic conversion process associated with the MT contributes a smaller part for TD–MRG waves, but is of importance comparable to barotropic conversion for ER waves as it can produce the tilted vertical structure. The growth rates of the waves are much larger during strong MT years than during weak MT years. Numerical experiments are conducted for an idealized MRG or ER wave using a linear shallow-water model. The results confirm that the monsoon background flow can lead to an MRG-to-TD transition and the ER wave amplifies along the axis of the MT and is more active in the strong MT state. Those results are consistent with the findings in Part I. This indicates that the mean flow of the MT provides a favorable background condition for the development of the waves and acts as a key energy source.


Author(s):  
Sahib Singh Chawla

The laminar boundary layer on a magnetized plate, when the magnetic field oscillates in magnitude about a constant non-zero mean, is analysed. For low-frequency fluctuations the solution is obtained by a series expansion in terms of a frequency parameter, while for high frequencies the flow pattern is of the ‘skin-wave’ type unaffected by the mean flow. In the low-frequency range, the phase lead and the amplitude of the skin-friction oscillations increase at first and then decrease to their respective ‘skin-wave’ values. On the other hand the phase angle of the surface current decreases from 90° to 45° and its amplitude increases with frequency.


2016 ◽  
Vol 788 ◽  
pp. 521-548 ◽  
Author(s):  
L. R. Joel Sundstrom ◽  
Berhanu G. Mulu ◽  
Michel J. Cervantes

Wall shear stress measurements employing a hot-film sensor along with laser Doppler velocimetry measurements of the axial and tangential velocity and turbulence profiles in a pulsating turbulent pipe flow are presented. Time-mean and phase-averaged results are derived from measurements performed at pulsation frequencies ${\it\omega}^{+}={\it\omega}{\it\nu}/\bar{u}_{{\it\tau}}^{2}$ over the range of 0.003–0.03, covering the low-frequency, intermediate and quasi-laminar regimes. In addition to the base case of a single pulsation imposed on the mean flow, the study also investigates the flow response when two pulsations are superimposed simultaneously. The measurements from the base case show that, when the pulsation belongs to the quasi-laminar regime, the oscillating flow tends towards a laminar state in which the velocity approaches the purely viscous Stokes solution with a low level of turbulence. For ${\it\omega}^{+}<0.006$, the oscillating flow is turbulent and exhibits a region with a logarithmic velocity distribution and a collapse of the turbulence intensities, similar to the time-averaged counterparts. In the low-frequency regime, the oscillating wall shear stress is shown to be directly proportional to the Stokes length normalized in wall units $l_{s}^{+}~(=\sqrt{2/{\it\omega}^{+}})$, as predicted by quasi-steady theory. The base case measurements are used as a reference when evaluating the data from the double-frequency case and the oscillating quantities are shown to be close to superpositions from the base case. The previously established view that the time-averaged quantities are unaffected by the imposition of small-amplitude pulsed unsteadiness is shown to hold also when two pulsations are superposed on the mean flow.


2006 ◽  
Vol 63 (5) ◽  
pp. 1420-1431 ◽  
Author(s):  
W. A. Norton

Abstract The atmospheric response to a localized distribution of tropical heating is examined in terms of the stationary waves excited and how these impact the mean flow near the tropical tropopause. This is done by examining nonlinear simulations of the Gill model with a primitive equation model that extends from the surface up into the stratosphere. The model produces strong cooling of zonal mean temperatures near the tropical tropopause when the heating is on the equator but weaker cooling with the heating at 15°N. The model shows that equatorial Rossby waves that penetrate the lower stratosphere and changes in EP flux divergence that correspond to the observed changes between December and August. It is suggested that ascent in the upper tropical troposphere is driven by vorticity advection or equivalently potential vorticity fluxes due to these equatorial Rossby waves, particularly when the heating is close to the equator. The model results provide support to the hypothesis that the annual cycle in tropical tropopause temperatures is a result of the annual variation in latitude of tropical heating and that equatorial Rossby waves are key in producing the response in the upper troposphere and lower stratosphere.


2009 ◽  
Vol 16 (3) ◽  
pp. 381-392 ◽  
Author(s):  
G. M. Reznik ◽  
V. Zeitlin

Abstract. Nonlinear interactions of the barotropic Rossby waves propagating across the equator with trapped baroclinic Rossby or Yanai modes and mean zonal flow are studied within the two-layer model of the atmosphere, or the ocean. It is shown that the equatorial waveguide with a mean current acts as a resonator and responds to barotropic waves with certain wavenumbers by making the trapped baroclinic modes grow. At the same time the equatorial waveguide produces the barotropic response which, via nonlinear interaction with the mean equatorial current and with the trapped waves, leads to the saturation of the growing modes. The excited baroclinic waves can reach significant amplitudes depending on the magnitude of the mean current. In the absence of spatial modulation the nonlinear saturation of thus excited waves is described by forced Landau-type equation with one or two attracting equilibrium solutions. In the latter case the spatial modulation of the baroclinic waves is expected to lead to the formation of characteristic domain-wall defects. The evolution of the envelopes of the trapped Rossby waves is governed by driven Ginzburg-Landau equation, while the envelopes of the Yanai waves obey the "first-order" forced Ginzburg-Landau equation. The envelopes of short baroclinic Rossby waves obey the damped-driven nonlinear Schrodinger equation well studied in the literature.


Sign in / Sign up

Export Citation Format

Share Document