Investigation of sea spray effect on the vertical momentum transport using an Eulerian multi-fluid-type model

Author(s):  
Yevgenii Rastigejev ◽  
Sergey A. Suslov

AbstractThe Eulerian multi-fluid mathematical model is developed to describe the marine atmospheric boundary layer laden with sea spray under high wind condition of a hurricane. The model considers spray and air as separate continuous interacting turbulent media and employs the multi-fluid E – ε closure. Each phase is described by its own set of coupled conservation equations and characterized by its own velocity. Such an approach enables us to accurately quantify the interaction between spray and air and pinpoint the effect of spray on the vertical momentum transport much more precisely than could be done with traditional mixture-type approaches. The model consistently quantifies the effect of spray inertia and the suppression of air turbulence due to two different mechanisms: the turbulence attenuation, which results from the inability of spray droplets to fully follow turbulent fluctuations, and the vertical transport of spray against the gravity by turbulent eddies. The results of numerical and asymptotic analyses show that the turbulence suppression by spray overpowers its inertia several meters above wave crests resulting in a noticeable wind acceleration and the corresponding reduction of the drag coefficient from the reference values for a spray-free atmosphere. This occurs at a much lower than predicted previously spray volume fraction values ~ 10−5. The falloff of the drag coefficient from its reference values is stronger pronounced at higher altitudes. The drag coefficient reaches its maximum at spray volume fraction values ~ 10−4 that is several times smaller than predicted by mixture-type models.

Author(s):  
R. R. Sonolikar ◽  
M. P. Patil ◽  
R. B. Mankar ◽  
S. S. Tambe ◽  
B. D. Kulkarni

Abstract The drag coefficient plays a vital role in the modeling of gas-solid flows. Its knowledge is essential for understanding the momentum exchange between the gas and solid phases of a fluidization system, and correctly predicting the related hydrodynamics. There exists a number of models for predicting the magnitude of the drag coefficient. However, their major limitation is that they predict widely differing drag coefficient values over same parameter ranges. The parameter ranges over which models possess a good drag prediction accuracy are also not specified explicitly. Accordingly, the present investigation employs Geldart’s group B particles fluidization data from various studies covering wide ranges of Re and εs to propose a new unified drag coefficient model. A novel artificial intelligence based formalism namely genetic programming (GP) has been used to obtain this model. It is developed using the pressure drop approach, and its performance has been assessed rigorously for predicting the bed height, pressure drop, and solid volume fraction at different magnitudes of Reynolds number, by simulating a 3D bubbling fluidized bed. The new drag model has been found to possess better prediction accuracy and applicability over a much wider range of Re and εs than a number of existing models. Owing to the superior performance of the new drag model, it has a potential to gainfully replace the existing drag models in predicting the hydrodynamic behavior of fluidized beds.


2021 ◽  
Vol 9 (11) ◽  
pp. 1248
Author(s):  
Jian Shi ◽  
Zhihao Feng ◽  
Yuan Sun ◽  
Xueyan Zhang ◽  
Wenjing Zhang ◽  
...  

The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux involves sea surface drag, which is largely affected by the ocean wave state. Under strong winds, the sea surface drag coefficient (CD) does not increase linearly with the increasing wind speed, namely, the increase of CD is inhibited by strong winds. In this study, a sea surface drag coefficient is constructed that can be applied to the calculation of the air–sea momentum flux under high wind speed. The sea surface drag coefficient also considers the influence of wave state and sea spray droplets generated by wave breaking. Specially, the wave-dependent sea spray generation function is employed to calculate sea spray momentum flux. This facilitates the analysis not only on the sensitivity of the sea spray momentum flux to wave age, but also on the effect of wave state on the effective CD (CD, eff) under strong winds. Our results indicate that wave age plays an important role in determining CD. When the wave age is >0.4, CD decreases with the wave age. However, when the wave age is ≤0.4, CD increases with the wave age at low and moderate wind speeds but tends to decrease with the wave age at high wind speeds.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1014 ◽  
Author(s):  
Essam R. EL-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The spotlight of this investigation is primarily the effectiveness of the magnetic field on the natural convective for a Fe3O4 ferrofluid flow over a vertical radiate plate using streamwise sinusoidal variation in surface temperature. The energy equation is reduplicated by interpolating the non-linear radiation effectiveness. The original equations describing the ferrofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-differential quadrature method (HLDQM). HLDQM is a high order semi-analytical numerical method that results in analytical solutions in η -direction, and so the solutions are valid overall in the η domain, not only at grid points. The dimensionless velocity and temperature curves are elaborated. Furthermore, the engineering curiosity of the drag coefficient and local Nusselt number are debated and sketched in view of various emerging parameters. The analyzed numerical results display that applying the magnetic field to the ferroliquid generates a dragging force that diminishes the ferrofluid velocity, whereas it is found to boost the temperature curves. Furthermore, the drag coefficient sufficiently minifies, while an evolution in the heat transfer rate occurs as nanoparticle volume fraction builds. Additionally, the augmentation in temperature ratio parameter signifies a considerable growth in the drag coefficient and Nusselt number. The current theoretical investigation may be beneficial in manufacturing processes, development of transport of energy, and heat resources.


2014 ◽  
Vol 31 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Ji Yeon Park ◽  
Sungil Lim ◽  
Kihong Park

Abstract Measurements of size distribution, hygroscopicity, and volatility of submicrometer sea spray particles produced by the bubble busting of artificial and natural seawater were conducted to determine their mixing state and volume fractions of hygroscopic and nonhygroscopic species or volatile and nonvolatile species. The particles sprayed from artificial seawater having insoluble silica particles were found to be an external mixture of two groups of particles having hygroscopic growth factors (HGFs) of 1.33 (an internal mixture of nonhygroscopic silica particles and hygroscopic salt species) and 1.68 (a similar mixture having more salt species) when the mass ratio of insoluble particles to dissolved salts was higher than 2. For sea spray particles from natural seawater, the external mixing was not significantly observed because of a high concentration of dissolved salts. The HGFs of sea spray particles (80–140 nm) from natural seawater were in the range of 1.70–1.76, which were lower than from pure artificial seawater (1.87), and the HGFs had no change before and after membrane filtration of seawater, suggesting that the sea spray particles from natural seawater contained a significant amount of nonhygroscopic dissolved organic matter in addition to hygroscopic salt species. The volume fraction of the nonhygroscopic species ranged from 20% to 29%, and the highest value was observed for seawater samples from the site where strong biological activity occurred, suggesting that biological materials played an important role in the formation of nonhygroscopic organic matter. Volatility measurements also identified the existence of volatile organic species in single particles from natural seawater, with the volume fraction of volatile species evaporated at 100°C being 4%–5%.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
E. R. EL-Zahar ◽  
A. M. Rashad ◽  
W. Saad ◽  
L. F. Seddek

Abstract The goal of the current analysis is to scrutinize the magneto-mixed convective flow of aqueous-based hybrid-nanofluid comprising Alumina and Copper nanoparticles across a horizontal circular cylinder with convective boundary condition. The energy equation is modelled by interpolating the non-linear radiation phenomenon with the assisting and opposing flows. The original equations describing the magneto-hybrid nanofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-Chebyshev spectral method (HLCSM). HLCSM is a high order spectral semi-analytical numerical method that results in an analytical solution in η-direction and thereby the solution is valid in overall the η-domain, not only at the grid points. The impacts of diverse parameters on the allied apportionment are inspected, and the fallouts are described graphically in the investigation. The physical quantities of interest containing the drag coefficient and the heat transfer rate are predestined versus fundamental parameters, and their outcomes are elucidated. It is witnessed that both drag coefficient and Nusselt number have greater magnitude for Cu-water followed by hybrid nanofluid and Al2O3-water. Moreover, the value of the drag coefficient declines versus the enlarged solid volume fraction. To emphasize the originality of the current analysis, the outcomes are compared with quoted works, and excellent accord is achieved in this consideration.


2021 ◽  
Author(s):  
Xingkun Xu ◽  
Joey Voermans ◽  
Alexander Babanin ◽  
Hongyu Ma ◽  
Changlong Guan

<p>As one of typical elements in the air-sea boundary layer, sea spray is expected to mediate energy flux exchange in the air and ocean boundary layers, and therefore it is of crucial importance to the meteorology, oceanology, and regional climatology. In addition, the spray is also considered as one of the missing physical mechanisms in atmospheric and oceanic numerical models. Hence, it is necessary to accurately predict how much sea spray is produced at the air-sea boundary layer. Though spray has been studied for a number of decades, large uncertainties still linger. For instance, uncertainties in qualifying how much spray is produced on the sea surface reach 10<sup>6</sup> times. This is because of the rarity of spray observations in the field, especially under strong wind condition.</p><p>To give a reliable spray production model, scientists tried to employ laser-based facilities in the field to observe sea spray by interpreting infrared laser-beam intensity into sea spray volume flux over the water surface. Hence, in the current study, we collected datasets in the field measured by laser-based facilities on the North-West Shelf of the coast of Western Australia, thereafter, further analyzed, and calibrated them through a series of academic, statistical, and physical analysis to ensure the data quality. After that, assuming the existence of spray drops in the air-sea layer would attenuate the infrared laser-beam intensity, the weakening extends of laser-beam intensity is used to estimate the volume flux of sea spray above the ocean surface at winds speed ranging from light to extreme during the passage of Tropical Cyclone Olwyn (2015). It should be noted that our observations of sea spray volume flux are within the ranges of existing models and are consistent with the model proposed by Andreas (1992) in both trend and magnitude.</p><p>Using the field observations of the sea spray volume flux, a sea spray volume flux model can be constructed. Given that sea spray droplets are generated at the ocean surface through breaking waves and wind shear, the sea spray volume flux is expected to be dominated by the properties of the local wind and wave field. For physical consistency across the wide range of scales observed in the field and laboratory, non-dimensional parameters (i.e., non-dimensional wind speed and the mean wave steepness) were adopted to construct the model. Consequently, a power-law non-dimensional spray volumetric flux model is suggested based on the estimation of the spray volume flux. It should be noted that one sensitive test was conducted to substantiate the inclusion of wave breaking process, here simply included with the mean wave steepness, improves spray volume flux parameterization.</p>


2011 ◽  
pp. 110421064116041
Author(s):  
A. Toffoli ◽  
A. V. Babanin ◽  
M. A. Donelan ◽  
B. K. Haus ◽  
D. Jeong

2010 ◽  
Vol 10 (6) ◽  
pp. 2867-2877 ◽  
Author(s):  
R. L. Modini ◽  
B. Harris ◽  
Z. D. Ristovski

Abstract. Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200 °C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s to 24 h) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can't necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.


Sign in / Sign up

Export Citation Format

Share Document