scholarly journals Stabilizing Hydrographic Profiles with Minimal Change to the Water Masses

2017 ◽  
Vol 34 (9) ◽  
pp. 1935-1945 ◽  
Author(s):  
Paul M. Barker ◽  
Trevor J. McDougall

AbstractBoth observed and averaged oceanographic data often contain regions with density inversions. This paper presents two methods of stabilizing a water column. The first method is intended for use with observed data; it minimally adjusts Absolute Salinity while leaving the values of in situ temperature unchanged. The second method adjusts the values of both Absolute Salinity and Conservative Temperature, and these adjustments are made in such a way as to cause the least possible damage to the water-mass structure of the vertical cast.

Author(s):  
Efraín Rodríguez Rubio ◽  
Alan Giraldo

Malpelo Island forms the insular ecoregion of the Colombian Pacific, and is composed by a mosaic of terrestrial ecosystems, and unique coastal and shallow subtidal systems. Considering its insular nature, the oceanographic features of this locality are expected to be related with the physical and chemical dynamics of the Eastern Tropical Pacific (ETP) and be modulated by the regional dynamic of the Colombian Pacific Oceanic Basin (COPC in Spanish). In this work, in situ data was used to describe the thermohaline conditions in the water column in Malpelo Island and identify key water mass during the two contrasting hydro-meteorological periods of the COPC. Furthermore, we analyzed the thermal and haline variability in the COPC and defined the surface geostrophic flow from in situ oceanographic data during the same time in order to evaluate its effect on the oceanographic conditions in the pelagic environment off Malpelo Island.


2011 ◽  
Vol 41 (4) ◽  
pp. 810-826 ◽  
Author(s):  
Angélique Melet ◽  
Jacques Verron ◽  
Lionel Gourdeau ◽  
Ariane Koch-Larrouy

Abstract The Solomon Sea is a key region of the southwest Pacific Ocean, connecting the thermocline subtropics to the equator via western boundary currents (WBCs). Modifications to water masses are thought to occur in this region because of the significant mixing induced by internal tides, eddies, and the WBCs. Despite their potential influence on the equatorial Pacific thermocline temperature and salinity and their related impact on the low-frequency modulation of El Niño–Southern Oscillation, modifications to water masses in the Solomon Sea have never been analyzed to our knowledge. A high-resolution model incorporating a tidal mixing parameterization was implemented to depict and analyze water mass modifications and the Solomon Sea pathways to the equator in a Lagrangian quantitative framework. The main routes from the Solomon Sea to the equatorial Pacific occur through the Vitiaz and Solomon straits, in the thermocline and intermediate layers, and mainly originate from the Solomon Sea south inflow and from the Solomon Strait itself. Water mass modifications in the model are characterized by a reduction of the vertical temperature and salinity gradients over the water column: the high salinity of upper thermocline water [Subtropical Mode Water (STMW)] is eroded and exported toward surface and deeper layers, whereas a downward heat transfer occurs over the water column. Consequently, the thermocline water temperature is cooled by 0.15°–0.3°C from the Solomon Sea inflows to the equatorward outflows. This temperature modification could weaken the STMW anomalies advected by the subtropical cell and thereby diminish the potential influence of these anomalies on the tropical climate. The Solomon Sea water mass modifications can be partially explained (≈60%) by strong diapycnal mixing in the Solomon Sea. As for STMW, about a third of this mixing is due to tidal mixing.


2014 ◽  
Vol 2014 (1) ◽  
pp. 299894 ◽  
Author(s):  
Mike Goldthorp* ◽  
Patrick Lambert ◽  
Carl Brown

When oil is spilled into the marine environment, it may be found on the water's surface, in the water column, in the sediment, or on the shoreline. When delineating the extent of contamination, it is important to be able to differentiate the spilled oil from other components that may appear to be oil. There are established methods for detecting oil-in-water, such as fluorometry, that allow in situ measurements to be made. In this study, we investigate both established methods and potential technological advancements that could provide a means for a site investigator to gather meaningful on-site information regarding the presence of oil. The primary focus will be usefulness to a shoreline application, but application to other types of samples is addressed. The degree to which an oil could be identified using these portable methods, such as the ability to differentiate petrogenic from biogenic oils, is also discussed. Method comparisons are discussed, with relevance to portability, selectivity, relative cost, and ability to process multiple samples.


2017 ◽  
Author(s):  
Marion Kersalé ◽  
Tarron Lamont ◽  
Sabrina Speich ◽  
Thierry Terre ◽  
Remi Laxenaire ◽  
...  

Abstract. The eastern side of the SAMBA array (South Atlantic Meridional overturning circulation Basin-wide Array) along the latitude 34.5° S is used to assess the nonlinear, mesoscale dynamics of the Cape Basin. This array presently consists of current meter moorings and CPIES (bottom mounted Inverted Echo Sounders with pressure sensor and current meter) deployed across the continental slope. These data, available from September 2014 to December 2015, combined with satellite altimetry allow us to investigate the characteristics and the impact of these mesoscale structures on local water masses distribution and cross-validate the different data sets. We demonstrate that the upper slope moorings are affected by cyclonic eddies generated at the South Benguela upwelling front, while the deeper slope moorings are affected by the more complex dynamics of the Cape Basin involving Agulhas Rings and cyclonic eddies. This complex dynamics induces strong intra-seasonal upper-ocean velocity variations and water masses exchanges across the shelf and the open ocean, but also across the subantarctic and subtropical waters. Under four case studies, the full-water column hydrographic properties of each mesoscale feature has been evaluated. Our analyses show that exchange of water masses happens through the advection of water by mesoscale eddies but also via wide water mass intrusions engendered by the existence of intense dipoles. The high spatial and temporal scales resolved by the moorings allows us to define the substantial role of these mesoscale features over the full-water column. Future investigations with longer time series at these existing sites will lead to a better understanding of the eastern boundary current variability, and ultimately improve our understanding of the strength and variability of the Meridional Overturning Circulation.


2018 ◽  
Vol 36 (1) ◽  
pp. 5
Author(s):  
Marcus Vinícius Carpes Barão ◽  
João Paulo Ristow ◽  
Marina Bousfield ◽  
Guillaume François Gilbert Barrault ◽  
Antonio Henrique Da Fontoura Klein

ABSTRACT. This work presents a methodology for legacy seismic data from oil and gas industry use for water column acoustic imaging. The objective is to improve the detection of internal mesoscale ocean structures by combining the results of the seismic data processing with oceanographic parameters. The procedure to obtain these images is called seismic oceanography and is an emerging tool for large-scale analysis of physical properties and processes of the ocean. The seismic data collection from the oil industry can be used to extract seismic oceanographic information since they both have similar survey configuration requirements for their data acquisition. The seismic data used were obtained from the Brazilian Oil Exploration Database and the oceanographic data were obtained in World Ocean Database. The methodology used to detect oceanographic structures was divided into four stages: data selection; oceanographic parameters analysis; seismic oceanography processing and interpretation; and combined analysis of seismic data with oceanographic data. The analysis and interpretation of the data showed that reflectivity curves calculated using oceanographic parameters have strong correlation with the seismic oceanography data. The detected reflections corroborate with the literature information about the boundaries of the water masses of the region and with abrupt gradients of the oceanographic parameters.Keywords: seismic oceanography, acoustic image, water masses, water column reflections, oceanographic parameters. RESUMO. Este trabalho apresenta uma metodologia para utilização de dados sísmicos do acervo da indústria de petróleo e gás para gerar imagens acústicas da coluna d’água. O objetivo é melhorar a detecção de estruturas oceânicas em mesoescala por meio da combinação de resultados de processamento de dados sísmicos com parâmetros oceanográficos. Denominada de oceanografia sísmica, o presente método é uma ferramenta emergente para a análise de propriedades físicas e processos dos oceanos. O acervo de dados sísmicos da indústria do petróleo pode ser utilizado para extrair informação sísmica oceanográfica, uma vez que ambos têm configurações semelhantes para a sua aquisição de dados. Os dados sísmicos utilizados foram obtidos da Base de Dados de Exploração e Produção e os dados oceanográficos foram obtidos no World Ocean Database. A metodologia utilizada foi dividida em quatro etapas: seleção de dados; análise de parâmetros oceanográficos; processamento e interpretação da oceanografia sísmica; e análise combinada de dados sísmicos com dados oceanográficos. Resultados mostram que as curvas de refletividade calculadas utilizando parâmetros oceanográficos têm forte correlação com os dados da oceanografia sísmica. As reflexões detectadas corroboraram comas informações da literatura sobre os limites das massas d’água da região e com gradientes abruptos dos parâmetros oceanográficos.Palavras-chave: oceanografia sísmica, imagem acústica, massas d’água, reflexões na coluna d’água, parâmetros oceanográficos.


2007 ◽  
Vol 148 (23) ◽  
pp. 1067-1075
Author(s):  
Krisztina Fischer ◽  
Orsolya Galamb ◽  
Béla Molnár ◽  
Zsolt Tulassay ◽  
András Szabó

A gyermekkori nephrosis 90%-a idiopathiás nephrosis szindróma. Az idetartozó három kórkép, a minimal change betegség, a mesangialis proliferatio és a focalis sclerosis hasonló klinikai képpel jelentkező, eltérő prognózisú és terápiás válaszú betegség. Dolgozatunk célja az idiopathiás nephrosis szindrómába tartozó kórképek kialakulásával, progressziójával összefüggő genetikai ismeretek, génexpressziós változások áttekintése és funkcionális csoportosítása. A génexpressziós változások meghatározásának eszközeként, dolgozatunk röviden összefoglalja a northern blot, a ribonuclease protection assay, az in situ RNS-hibridizáció, a kvantitatív RT-PCR és a microarray módszerek lényegét. Az eddig elvégzett vizsgálatok a DNS-szintézis és repair gének, növekedési faktorok, extracelluláris mátrix, extracelluláris ligandreceptorok, extracelluláris jelátvitel zavarai mellett kiemelik a metabolikus és transzporter gének, illetve az immunszabályozó gének molekuláris eltéréseit, amelyek összefüggésben vannak az idiopathiás nephrosis szindróma eddig megismert molekuláris hátterével. A chiptechnológia fejlődésével és elterjedésével ezek a markerek és a hagyományos vizsgálati módszerek párhuzamos alkalmazása rutindiagnosztikai szempontból is fontossá válhat.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2021 ◽  
pp. 1-8
Author(s):  
Carina Wyborn ◽  
Elena Louder ◽  
Mike Harfoot ◽  
Samantha Hill

Summary Future global environmental change will have a significant impact on biodiversity through the intersecting forces of climate change, urbanization, human population growth, overexploitation, and pollution. This presents a fundamental challenge to conservation approaches, which seek to conserve past or current assemblages of species or ecosystems in situ. This review canvases diverse approaches to biodiversity futures, including social science scholarship on the Anthropocene and futures thinking alongside models and scenarios from the biophysical science community. It argues that charting biodiversity futures requires processes that must include broad sections of academia and the conservation community to ask what desirable futures look like, and for whom. These efforts confront political and philosophical questions about levels of acceptable loss, and how trade-offs can be made in ways that address the injustices in the distribution of costs and benefits across and within human and non-human life forms. As such, this review proposes that charting biodiversity futures is inherently normative and political. Drawing on diverse scholarship united under a banner of ‘futures thinking’ this review presents an array of methods, approaches and concepts that provide a foundation from which to consider research and decision-making that enables action in the context of contested and uncertain biodiversity futures.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Louis Legendre ◽  
Richard B Rivkin ◽  
Nianzhi Jiao

Abstract This “Food for Thought” article examines the potential uses of several novel scientific and technological developments, which are currently available or being developed, to significantly advance or supplement existing experimental approaches to study water-column biogeochemical processes (WCB-processes). After examining the complementary roles of observation, experiments and numerical models to study WCB-processes, we focus on the main experimental approaches of free-water in situ experiments, and at-sea and on-land meso- and macrocosms. We identify some of the incompletely resolved aspects of marine WCB-processes, and explore advanced experimental approaches that could be used to reduce their uncertainties. We examine three such approaches: free-water experiments of lengthened duration using bioArgo floats and gliders, at-sea mesocosms deployed several 100s m below the sea-surface using new biogeochemical sensors, and 50 m-tall on-land macrocosms. These approaches could lead to significant progress in concepts related to marine WCB-processes.


Sign in / Sign up

Export Citation Format

Share Document