scholarly journals Evaluation of Three-Beam and Four-Beam Profiler Wind Measurement Techniques Using a Five-Beam Wind Profiler and Collocated Meteorological Tower

2005 ◽  
Vol 22 (8) ◽  
pp. 1167-1180 ◽  
Author(s):  
Ahoro Adachi ◽  
Takahisa Kobayashi ◽  
Kenneth S. Gage ◽  
David A. Carter ◽  
Leslie M. Hartten ◽  
...  

Abstract In this paper a five-beam wind profiler and a collocated meteorological tower are used to estimate the accuracy of four-beam and three-beam wind profiler techniques in measuring horizontal components of the wind. In the traditional three-beam technique, the horizontal components of wind are derived from two orthogonal oblique beams and the vertical beam. In the less used four-beam method, the horizontal winds are found from the radial velocities measured with two orthogonal sets of opposing coplanar beams. In this paper the observations derived from the two wind profiler techniques are compared with the tower measurements using data averaged over 30 min. Results show that, while the winds measured using both methods are in overall agreement with the tower measurements, some of the horizontal components of the three-beam-derived winds are clearly spurious when compared with the tower-measured winds or the winds derived from the four oblique beams. These outliers are partially responsible for a larger 30-min, three-beam standard deviation of the profiler/tower wind speed differences (2.2 m s−1), as opposed to that from the four-beam method (1.2 m s−1). It was also found that many of these outliers were associated with periods of transition between clear air and rain, suggesting that the three-beam technique is more sensitive to small-scale variability in the vertical Doppler velocity because of its reliance on the point measurement from the vertical beam, while the four-beam method is surprisingly robust. Even after the removal of the rain data, the standard deviation of the wind speed error from the three-beam method (1.5 m s−1) is still much larger than that from the four-beam method. Taken together, these results suggest that the spatial variability of the vertical airflow in nonrainy periods or hydrometeor fall velocities in rainy periods makes the vertical beam velocities significantly less representative over the area across the three beams, and decreases the precision of the three-beam method. It is concluded that profilers utilizing the four-beam wind profiler technique have better reliability than wind profilers that rely on the three-beam wind profiler technique.

2016 ◽  
Vol 38 ◽  
pp. 291
Author(s):  
Diogo Machado Custodio ◽  
Jorge Yamasaki ◽  
Hildo Romeo Quinsan Junior ◽  
Gilberto Fernando Fisch

Monitoring the atmospheric conditions is one of the main activities in Aerospace Meteorology. During the launch spacecraft operations, measuring the wind at various atmospheric layers is crucial to mission success. In the Alcantara Launch Center operates a Wind Profiler (WP) Vaisala LAP-12000 which provides vertical profiles of wind between 1500 and 6000m of altitude, in layers of 145m, at intervals of 10 minutes. This study conducts a statistical analysis over one year of data obtained with WP by comparison with Vaisala RS92SGP radiosondes (RS). Correlation (ρ) analyses were performed on wind speed and its zonal and meridional components; and mean and standard deviation (σ) of the differences between the zonal and meridional components. The results has shown a strong correlation between the data acquired with both instruments, with ρ > 0,75 and σ 6 3m/s in all performed analyses.


2012 ◽  
Vol 51 (2) ◽  
pp. 380-391 ◽  
Author(s):  
Scott E. Giangrande ◽  
Edward P. Luke ◽  
Pavlos Kollias

AbstractExtended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0–10 cm−1) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s−1 with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3–0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


Author(s):  
Bowen Yan ◽  
Yangjin Yuan ◽  
Dalong Li ◽  
Ke Li ◽  
Qingshan Yang ◽  
...  

The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180∘. The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.


2009 ◽  
Vol 27 (12) ◽  
pp. 4435-4448 ◽  
Author(s):  
M. P. Morris ◽  
P. B. Chilson ◽  
T. J. Schuur ◽  
A. Ryzhkov

Abstract. The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD). This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009), in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009). Furthermore, the the study presents a method of investigating the time and height structure of DSDs.


2017 ◽  
Vol 31 (10) ◽  
pp. 11328-11336 ◽  
Author(s):  
Yngve Ögren ◽  
Alexey Sepman ◽  
Zhechao Qu ◽  
Florian M. Schmidt ◽  
Henrik Wiinikka

2015 ◽  
Vol 2 (1) ◽  
pp. 25-36
Author(s):  
Otieno Fredrick Onyango ◽  
Sibomana Gaston ◽  
Elie Kabende ◽  
Felix Nkunda ◽  
Jared Hera Ndeda

Wind speed and wind direction are the most important characteristics for assessing wind energy potential of a location using suitable probability density functions. In this investigation, a hybrid-Weibull probability density function was used to analyze data from Kigali, Gisenyi, and Kamembe stations. Kigali is located in the Eastern side of Rwanda while Gisenyi and Kamembe are to the West. On-site hourly wind speed and wind direction data for the year 2007 were analyzed using Matlab programmes. The annual mean wind speed for Kigali, Gisenyi, and Kamembe sites were determined as 2.36m/s, 2.95m/s and 2.97m/s respectively, while corresponding dominant wind directions for the stations were ,  and  respectively. The annual wind power density of Kigali was found to be  while the power densities for Gisenyi and Kamembe were determined as and . It is clear, the investigated regions are dominated by low wind speeds thus are suitable for small-scale wind power generation especially at Kamembe site.


Author(s):  
M. Satyavani ◽  
P. S. Brahmanandam ◽  
P. S. V. Subba Rao ◽  
M. P. Rao

This study reports diurnal variations of wind directions, wind speed of vector winds, and the evolution of boundary layer (BL) over a mid-latitude measured using a transportable 1290 MHz wind profiling radar located at Cardington (Lat. 52.10ºN; Long. 0.42ºE), Bedfordshire, UK from 17 to 28 April 2010. The horizontal winds show benign behavior during nighttime hours, while winds during daytime hours had magnitudes around, on average, 10-20 m/s, in the majority of the cases. The heights of the boundary layer (BL) varied from as low as ~1100 m to ~2600 km and BL height had shown to have evolved from 0700 universal time (UT) onwards and collapsed by 0000 UT.  Besides, a comparison made between winds measured by the 1290 MHz radar and near-by radiosonde showed a moderate similitude between them, albeit a few discrepancies are found in wind directions and speeds. The possible reasons for these discrepancies could be different volume sensing of observations of these independent observations. An attempt is, therefore, made to calculate radiosonde balloon drifts [1] for the ascending node of the balloons, which had confirmed that the balloons often drifted horizontally as long as up to 100 km. The large drifts, most probably, are the possible reasons for the mismatching of winds measured by these two independent remote sensing instruments.


2017 ◽  
Author(s):  
Shih-Chiao Tsai ◽  
Jenn-Shyong Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su ◽  
Jui-Hsiang Chen

Abstract. Multi-frequency range imaging (RIM) has been implemented in the Chung-Li very-high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 Aug, 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitations and demonstrated their different structured characteristics by means of the Capon-processed results.


Sign in / Sign up

Export Citation Format

Share Document