scholarly journals Influence of Synoptic Sea-Breeze Fronts on the Urban Heat Island Intensity in Dallas–Fort Worth, Texas

2016 ◽  
Vol 144 (4) ◽  
pp. 1487-1507 ◽  
Author(s):  
Xiao-Ming Hu ◽  
Ming Xue

Abstract When assessed using the difference between urban and rural air temperatures, the urban heat island (UHI) is most prominent during the nighttime. Typically, nocturnal UHI intensity is maintained throughout the night. The UHI intensity over Dallas–Fort Worth (DFW), Texas, however, experienced frequent “collapses” (sudden decreases) around midnight during August 2011, while the region was experiencing an intense heat wave. Observational and modeling studies were conducted to understand this unique phenomenon. Sea-breeze passage was found to be ultimately responsible for the collapses of the nocturnal UHI. Sea-breeze circulation developed along the coast of the Gulf of Mexico during the daytime. During the nighttime, the sea-breeze circulation was advected inland (as far as ~400 km) by the low-level jet-enhanced southerly flow, maintaining the characteristics of sea-breeze fronts, including the enhanced wind shear and vertical mixing. Ahead of the front, surface radiative cooling enhanced the near-surface temperature inversion in rural areas through the night with calm winds. During the frontal passage (around midnight at DFW), the enhanced vertical mixing at the leading edge of the fronts brought warmer air to the surface, leading to rural surface warming events. In contrast, urban effects led to a nearly neutral urban boundary layer. The enhanced mechanical mixing associated with sea-breeze fronts, therefore, did not increase urban surface temperature. The different responses to the sea-breeze frontal passages between rural (warming) and urban areas (no warming) led to the collapse of the UHI. The inland penetration of sea-breeze fronts at such large distances from the coast and their effects on UHI have not been documented in the literature.

Author(s):  
Yoichi Kawamoto ◽  
Hiroshi Yoshikado ◽  
Ryozo Ooka ◽  
Hiroshi Hayami ◽  
Hong Huang ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 3684
Author(s):  
Yingying Ji ◽  
Jiaxin Jin ◽  
Wenfeng Zhan ◽  
Fengsheng Guo ◽  
Tao Yan

Plant phenology is one of the key regulators of ecosystem processes, which are sensitive to environmental change. The acceleration of urbanization in recent years has produced substantial impacts on vegetation phenology over urban areas, such as the local warming induced by the urban heat island effect. However, quantitative contributions of the difference of land surface temperature (LST) between urban and rural (ΔLST) and other factors to the difference of spring phenology (i.e., the start of growing season, SOS) between urban and rural (ΔSOS) were rarely reported. Therefore, the objective of this study is to explore impacts of urbanization on SOS and distinguish corresponding contributions. Using Hangzhou, a typical subtropical metropolis, as the study area, vegetation index-based phenology data (MCD12Q2 and MYD13Q1 EVI) and land surface temperature data (MYD11A2 LST) from 2006–2018 were adopted to analyze the urban–rural gradient in phenology characteristics through buffers. Furthermore, we exploratively quantified the contributions of the ΔLST to the ΔSOS based on a temperature contribution separation model. We found that there was a negative coupling between SOS and LST in over 90% of the vegetated areas in Hangzhou. At the sample-point scale, SOS was weakly, but significantly, negatively correlated with LST at the daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in urban) rather than that at nighttime. Besides, the ΔSOS dominated by the ΔLST contributed more than 70% of the total ΔSOS. We hope this study could help to deepen the understanding of responses of urban ecosystem to intensive human activities.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Ping Jiang ◽  
Xiaoran Liu ◽  
Haonan Zhu ◽  
Yonghua Li

The spatial and temporal features of urban heat island (UHI) intensity in complex urban terrain are barely investigated. This study examines the UHI intensity variations in mountainous Chongqing using a dense surface monitoring network. The results show that the UHI intensity is closely related to underlying surfaces, and the strongest UHI intensity is confined around the central urban areas. The UHI intensity is most prominent at night and in warm season, and the magnitude could reach ~4.5 °C on summer night. Our quantitative analysis shows a profound contribution of urbanization level to UHI intensity both at night and in summer, with regression coefficient b = 4.31 and 6.65, respectively. At night, the urban extra heat such as reflections of longwave radiation by buildings and release of daytime-stored heat from artificial materials, is added into the boundary layer, which compensates part of urban heat loss and thus leads to stronger UHI intensity. In summer, the urban areas are frequently controlled by oppressively hot weather. Due to increased usage of air conditioning, more anthropogenic heat is released. As a result, the urban temperatures are higher at night. The near-surface wind speed can serve as an indicator predicting UHI intensity variations only in the diurnal cycle. The rural cooling rate during early evening transition, however, is an appropriate factor to estimate the magnitude of UHI intensity both at night and in summer.


Author(s):  
Van Tran Thi ◽  
Bao Ha Duong Xuan ◽  
Mai Nguyen Thi Tuyet

In urban area, one of the great problem is the rise of temperature, which leads to form the urban heat island effect. This paper refers to the trend of the urban surface temperature extracted from the Landsat images from which to consider changes in the formation of surface urban heat island for the north of Ho Chi Minh city in period 1995-2015. Research has identified land surface temperature from thermal infrared band, according to the ability of the surface emission based on characteristics of normalized difference vegetation index NDVI. The results showed that temperature fluctuated over the city with a growing trend and the gradual expansion of the area of the high-temperature zone towards the suburbs. Within 20 years, the trend of the formation of surface urban heat island with two typical locations showed a clear difference between the surface temperature of urban areas and rural areas with space expansion of heat island in 4 times in 2015 compared to 1995. An extreme heat island located in the inner city has an area of approximately 18% compared to the total area of the region. Since then, the solution to reduce the impact of urban heat island has been proposed, in order to protect the urban environment and the lives of residents in Ho Chi Minh City becoming better


2021 ◽  
Author(s):  
Lorenzo Mentaschi ◽  
Gregory Duveiller ◽  
Grazia Zulian ◽  
Christina Corbane ◽  
Martino Pesaresi ◽  
...  

Abstract Surface temperatures are generally higher in cities than in rural surroundings. This phenomenon, known as surface urban heat island (SUHI), increases the risk of heat-related human illnesses and mortality. Past global studies analysed this phenomenon aggregated at city scale or over seasonal and annual time periods, while human impacts strongly depend on shorter term heat stress experienced locally. Here we develop a global long-term high-resolution dataset of daytime SUHI as urban-rural surface temperature differences. Our results show that across urban areas worldwide over the period 2003-2020, 3-day SUHI extremes are on average more than twice as high as the warm-season median SUHI, with local exceedances up to 10 K. Over this period, SUHI extremes have increased more rapidly than warm-season medians, and averaged worldwide are now 1.04 K or 31% higher compared to 2003. This can be linked with increasing urbanisation, more frequent heatwaves, and greening of the earth, processes that are all expected to continue in the coming decades. Within many cities there are hotspots where extreme SUHI intensity is 10 to 15 K higher compared to relatively cooler city parts. Given the limited human adaptability to heat stress, our results advocate for mitigation strategies targeted at reducing SUHI extremes in the most vulnerable and exposed city neighbourhoods.


2012 ◽  
Vol 13 (1) ◽  
pp. 19 ◽  
Author(s):  
Halda Aditya Belgaman ◽  
Sri Lestari ◽  
Hilda Lestiana

Pulau panas adalah suatu fenomena dimana suhu udara di suatu daerah lebih tinggi daripada suhu udara terbuka di sekitarnya. Daerah urban (perkotaan) sering mempunyai suhu lebih tinggi 1-6 derajat Celsius dibandingkan daerah sekitarnya (daerah pinggiran/ rural). Fenomena inilah yang dikenal sebagai ”Pulau Panas perkotaan” atau ”Urban Heat Island” (UHI). Penelitian ini bertujuan untuk mengetahui pengaruh fenomena pulau panas perkotaan terhadap parameter iklim terutama suhu dan curah hujan di daerahJakarta dan sekitarnya. Data yang digunakan pada tugas akhir ini adalah data curah hujan dan temperatur udara harian pada 5 stasiun pengamatan iklim, periode Januari 1991 – Desember 2001 sebagai data permukaan. Citra satelit Landsat 7 ETM+ path / row 122/064 akuisisi tanggal 15/07/2001 band 5,4,2 digunakan untuk menganalisis tutupan lahan dan band 6 digunakan untuk distribusi temperatur permukaan. Hasil menunjukkan nilai temperatur permukaan Kota Jakarta dan sekitarnya berada antara 15.07˚C hingga 33.28˚C. Lokasi pulau panas perkotaan terdapat di daerah Jakarta pusat dan Jakarta utara, dengan perbedaan temperatur sebesar 3˚C dibandingkan dengan daerah sekitarnya.Tutupan lahan yang terdapat di lokasi tersebut merupakan lahan terbangun yang terdiri dari bangunan perumahan, perkantoran, dan jalan raya. Perhitungan nilai korelasi Spearman antara data temperatur udara dari lima stasiun pengamatan dengan nilai piksel temperatur permukaan memperlihatkan adanya korelasi positif antara dua variabel tersebut yang ditunjukkan oleh indeks korelasi sebesar 0.6.Dengan persamaan regresi diperoleh citra temperatur permukaan di seluruh daerah pengamatan yang hasilnya menggambarkan bahwa lokasi pulau panas perkotaan sangat berpengaruh terhadap distribusi temperatur udara di atasnya.Heat island was a phenomenon where the temperature of air in one region higher than the temperature of the open air around it. Urban areas often had the temperature higher 1-6 Celsius when compared the area of surrounding area (the area of outskirts/rural). This phenomenon that was known as ”Pulau Panas Perkotaan” or ”Urban Heat Island” (UHI). This Research aimed to knowing influence of the heat islands of urban areas to climate parameter especially the temperature and the rainfall in the Jakarta and surrounding area. Data used in this research was rainfall data and daily air temperaturefrom 5 climate observation stations, within time period from January 1991 to December 2001 as the surface data. The Landsat satellite image 7 ETM+ path/row 122/064 acquisition date 15/07/2001, band 5, 4, 2 was used to analyze the cover of land and the band 6 was used for the distribution of surface temperature was based on the pixels value.Results showed the value of surface temperature in Jakarta and surrounding area was between 15.07˚C through to 33.28˚C. Location of heat island were in the centre Jakarta and north Jakarta, with the difference of the temperature as big as 3˚C with thesurrounding area. The land cover in this location were the housing building, the office complex, and the highway. Calculation of Spearman correlation value between the air temperature and surface temperature showed the existence of the positive correlation between two variables that it was demonstrated by the correlation index 0.6. From the regression equation we get the interpolated air temperature in Jakarta area.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 86-110
Author(s):  
Manisha Maharjan ◽  
Anil Aryal ◽  
Bijay Man Shakya ◽  
Rocky Talchabhadel ◽  
Bhesh Raj Thapa ◽  
...  

Rapid Urbanization, and other anthropogenic activities, have amplified the change in land-use transition from green space to heat emission in built-up areas globally. As a result, there has been an increase in the land surface temperature (LST) causing the Urban Heat Island (UHI) effect, particularly in large cities. The UHI effect poses a serious risk to human health and well-being, magnified in large developing cities with limited resources to cope with such issues. This study focuses on understanding the UHI effect in Kathmandu Valley (KV), Delhi, and Dhaka, three growing cities in South Asia. The UHI effect was evaluated by analyzing the UHI intensity of the city with respect to the surroundings. We found that the central urban area, of all three cities, experienced more heat zones compared to the peri-urban areas. The estimated average surface temperature ranged from 21.1 ∘C in March 2014 to 32.0 ∘C in June 2015 in KV, while Delhi and Dhaka experienced surface temperature variation from 29.7 ∘C in June 2017 to 40.2 ∘C in June 2019 and 23.6 ∘C in March 2017 to 33.2 ∘C in March 2014, respectively. Based on magnitude and variation of LST, highly built-up central KV showed heat island characteristics. In both Delhi and Dhaka, the western regions showed the UHI effect. Overall, this study finds that the UHI zones are more concentrated near the urban business centers with high population density. The results suggest that most areas in these cities have a rising LST trend and are on the verge of being UHI regions. Therefore, it is essential that further detailed assessment is conducted to understand and abate the impact of the temperature variations.


2020 ◽  
Vol 20 (11) ◽  
pp. 6479-6493 ◽  
Author(s):  
Wenchao Han ◽  
Zhanqing Li ◽  
Fang Wu ◽  
Yuwei Zhang ◽  
Jianping Guo ◽  
...  

Abstract. The urban heat island intensity (UHII) is the temperature difference between urban areas and their rural surroundings. It is commonly attributed to changes in the underlying surface structure caused by urbanization. Air pollution caused by aerosol particles can affect the UHII through changing (1) the surface energy balance by the aerosol radiative effect (ARE) and (2) planetary-boundary-layer (PBL) stability and airflow intensity by modifying thermodynamic structure, which is referred to as the aerosol dynamic effect (ADE). By analyzing satellite data and ground-based observations collected from 2001 to 2010 at 35 cities in China and using the WRF-Chem model, we find that the impact of aerosols on UHII differs considerably: reducing the UHII in summer but increasing the UHII in winter. This seasonal contrast is proposed to be caused by the different strengths of the ARE and ADE between summer and winter. In summer, the ARE on UHII is dominant over the ADE, cooling down surface temperature more strongly in urban areas than in rural areas because of much higher aerosol loading, and offsets the urban heating, therefore weakening UHII. In winter, however, the ADE is more dominant, because aerosols stabilize the PBL more in the polluted condition, weakening the near-surface heat transport over urban areas in both vertical and horizontal directions. This means that the heat accumulated in urban areas is dispersed less effectively, and thus the UHII is enhanced. These findings shed new light on the impact of the interaction between urbanization-induced surface changes and air pollution on urban climate.


Abstract Urban heat island (UHI) and sea-land breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting model with a single layer urban model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4-h and is strongest between 1200 and 1400 Local Time (UTC+8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20-km/ ∼1.5-km/ ∼3-h) with thermal vertical motions (∼1.5 m s−1) above the urban area and a SBC (horizontal/vertical/time scales: 6 - 7 km/ ∼1 km/ 2 - 3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summer-time urban heating in coastal megacities, such as Shanghai.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Afrilyani Kontryana ◽  
Abdul Wahid Hasyim ◽  
Amin Setyo Leksono

Developments in the city of Palangka Raya y giving different temperature between urban and sub-urban. Phenomenon that  cities have warmer temperatures than sub-urban and rural areas called Urban Heat Island (UHI). This study aims to find out about the development of the UHI phenomenon in the city of Palangka Raya  from 2000  to 2018 using remote sensing and geographical system. Based on the analysis of the TIR band landsat 7,  in Kota Palangka Raya since 2000 has been UHI phenomenon, where high Land Surface Temperature (LST) was found dominantly in urban areas  compared to sub-urban areas . In 2018, as Palangka Raya city  had developed, based on the result of TIR band Landsat 8, the distribution of high LST not only found in the urban area, but in the sub-urban zone, especially at  Menteng Urban Village and Panarung Urban Village. The development of UHI in Palangka Raya city over eighteen years (2000-2018) show  in the sub-urban area  experienced changes of UHIindex’s area more dynamic than the urban area. Urban development causing to conversion of  vegetated land into impervious land,  which greatly affects the energy balance. The increase in impervious areas causes more solar radiation  that reaches the surfaces of the earth   more absorbing and it is converted into sensible thermal  energy which increases the surface temperature.


Sign in / Sign up

Export Citation Format

Share Document